18 research outputs found

    How much dystrophin is enough: the physiological consequences of different levels of dystrophin in the mdx mouse

    Get PDF
    Splice modulation therapy has shown great clinical promise in Duchenne muscular dystrophy, resulting in the production of dystrophin protein. Despite this, the relationship between restoring dystrophin to established dystrophic muscle and its ability to induce clinically relevant changes in muscle function is poorly understood. In order to robustly evaluate functional improvement, we used in situ protocols in the mdx mouse to measure muscle strength and resistance to eccentric contraction-induced damage. Here, we modelled the treatment of muscle with pre-existing dystrophic pathology using antisense oligonucleotides conjugated to a cell-penetrating peptide. We reveal that 15% homogeneous dystrophin expression is sufficient to protect against eccentric contraction-induced injury. In addition, we demonstrate a >40% increase in specific isometric force following repeated administrations. Strikingly, we show that changes in muscle strength are proportional to dystrophin expression levels. These data define the dystrophin restoration levels required to slow down or prevent disease progression and improve overall muscle function once a dystrophic environment has been established in the mdx mouse model

    Pip6-PMO, A New Generation of Peptide-oligonucleotide Conjugates With Improved Cardiac Exon Skipping Activity for DMD Treatment.

    No full text
    Antisense oligonucleotides (AOs) are currently the most promising therapeutic intervention for Duchenne muscular dystrophy (DMD). AOs modulate dystrophin pre-mRNA splicing, thereby specifically restoring the dystrophin reading frame and generating a truncated but semifunctional dystrophin protein. Challenges in the development of this approach are the relatively poor systemic AO delivery and inefficient dystrophin correction in affected non-skeletal muscle tissues, including the heart. We have previously reported impressive heart activity including high-splicing efficiency and dystrophin restoration following a single administration of an arginine-rich cell-penetrating peptide (CPPs) conjugated to a phosphorodiamidate morpholino oligonucleotide (PMO): Pip5e-PMO. However, the mechanisms underlying this activity are poorly understood. Here, we report studies involving single dose administration (12.5 mg/kg) of derivatives of Pip5e-PMO, consecutively assigned as Pip6-PMOs. These peptide-PMOs comprise alterations to the central hydrophobic core of the Pip5e peptide and illustrate that certain changes to the peptide sequence improves its activity; however, partial deletions within the hydrophobic core abolish its efficiency. Our data indicate that the hydrophobic core of the Pip sequences is critical for PMO delivery to the heart and that specific modifications to this region can enhance activity further. The results have implications for therapeutic PMO development for DMD

    Expression analysis in multiple muscle groups and serum reveals complexity in the microRNA transcriptome of the mdx mouse with implications for therapy.

    Get PDF
    MicroRNAs (miRNAs) are a class of small RNAs that regulate gene expression and are implicated in wide-ranging cellular processes and pathological conditions including Duchenne muscular dystrophy (DMD). We have compared differential miRNA expression in proximal and distal limb muscles, diaphragm, heart and serum in the mdx mouse relative to wild-type controls. Global transcriptome analysis revealed muscle-specific patterns of differential miRNA expression as well as a number of changes common between tissues, including previously identified dystromirs. In the case of miR-31 and miR-34c, upregulation of primary-miRNA transcripts, precursor hairpins and all mature miRNAs derived from the same transcript or miRNA cluster, strongly suggests transcriptional regulation of these miRNAs. The most striking differences in differential miRNA expression were between muscle tissue and serum. Specifically, miR-1, miR-133a, and miR-206 were highly abundant in mdx serum but downregulated or modestly upregulated in muscle, suggesting that these miRNAs are promising disease biomarkers. Indeed, the relative serum levels of these miRNAs were normalized in response to peptide-phosphorodiamidate morpholino oligonucleotide (PMO) mediated dystrophin restoration therapy. This study has revealed further complexity in the miRNA transcriptome of the mdx mouse, an understanding of which will be valuable in the development of novel therapeutics and for monitoring their efficacy

    Peptide-conjugated phosphodiamidate oligomer-mediated exon skipping has benefits for cardiac function in mdx and Cmah-/-mdx mouse models of Duchenne muscular dystrophy

    No full text
    Cardiac failure is a major cause of mortality in patients with Duchenne muscular dystrophy (DMD). Antisense-mediated exon skipping has the ability to correct out-of-frame mutations in DMD to produce truncated but functional dystrophin. Traditional antisense approaches have however been limited by their poor uptake into cardiac muscle. The addition of cell-penetrating peptides to antisense molecules has increased their potency and improved their uptake into all muscles, including the heart. We have investigated the efficacy of the Peptide-conjugated phosphodiamidate morpholino oligomer (P-PMO) Pip6a-PMO, for restoration of cardiac dystrophin and functional rescue in DMD mice- the mdx mouse and the less well characterised Cmah-/-mdx mouse (which carry a human-like mutation in the mouse Cmah gene as well as a mutation in DMD). In our first study male mdx mice were administered Pip6a-PMO, i.v, fortnightly from 12 to 30 weeks of age alongside mock-injected age-matched mdx and C57BL10 controls. Mice received 4 doses of 18 mg/kg followed by 8 doses of 12.5 mg/kg. The cardiac function of the mice was analysed 2 weeks after their final injection by MRI followed by conductance catheter and their muscles were harvested for dystrophin quantification. In the second study, male Cmah-/-mdx mice, received 12.5 mg/kg Pip6a-PMO, i.v fortnightly from 8 to 26 weeks and assessed by MRI at 3 time points (12, 18 and 28 weeks) alongside mock-injected age-matched mdx, C57BL10 and Cmah-/-mdx controls. The mice also underwent MEMRI and conductance catheter at 28 weeks. This allowed us to characterise the cardiac phenotype of Cmah-/-mdx mice as well as assess the effects of P-PMO on cardiac function. Pip6a-PMO treatment resulted in significant restoration of dystrophin in mdx and Cmah-/-mdx mice (37.5% and 51.6%, respectively), which was sufficient to significantly improve cardiac function, ameliorating both right and left ventricular dysfunction. Cmah-/-mdx mice showed an abnormal response to dobutamine stress test and this was completely ameliorated by PIP6a-PMO treatment. These encouraging data suggest that total restoration of dystrophin may not be required to significantly improve cardiac outcome in DMD patients and that it may be realistic to expect functional improvements with modest levels of dystrophin restoration which may be very achievable in future clinical trials

    A specific protein disorder catalyzer of HIV-1 Nef

    No full text
    International audienceThe HIV-1 auxiliary protein Nef is required for the onset and progression of AIDS in HIV-1-infected persons. Here, we have deciphered the mode of action of a second-generation inhibitor of Nef, DLC27-14, presenting a competitive IC50 o

    Identification and biophysical assessment of the molecular recognition mechanisms between the human haemopoietic cell kinase Src homology domain and ALG-2-interacting protein X

    No full text
    International audienceSFKs (Src family kinases) are central regulators of many signaling pathways. Their functions are tighly regulated through SH ( Src homology) domain-mediated protein-protein interactions. A yeast two-hybrid screen using SH3 domains as bait identified Alix [ALG-2(apoptosis-linked gene 2)-interacting protein X] as a novel Hck (haemopoietic cell kinase) SH3 domain interactor. The Alix-Hck-SH3 interaction was confirmed in vitro by a GST (glutathione transferase) pull-down assay and in intact cells by a mammalian two-hybrid assay. Furthermore, the interaction was demonstrated to be biologically relevant in cells. Through biophysical experiments, we then identified the PRR (proline-rich region) motif of Alix that binds Hck-SH3 and determined a dissociation constant of 34.5µM. Heteronuclear NMR spectroscopy experiments were used to map the Hck-SH3 residues that interact with an ALIX construct containing the V and PRR domains or with the minimum identified interacting motif. Finally, SAXS (small-angle X-ray scattering) analysis showed that the terminal PRR of Alix is unfolded, at least before Hck-SH3 recognition. These results indicate that residues outside the canonical PxxP motif of Alix enhance its affinity and selectivity towards Hck-SH3. The structural framework of the HcK-Alix interaction will help to clarify how Hck and Alix assist during virus budding and cell-surface receptor regulatio
    corecore