111 research outputs found

    Comment on ``Force Balance at the Transition from Selective Withdrawal to Viscous Entrainment

    Full text link
    Comment on paper by Blanchette and Zhang, Phys. Rev. Lett. 102, 144501 (2009)

    Steric Constraints as a Global Regulation of Growing Leaf Shape

    Get PDF
    Shape is one of the important characteristics for the structures observed in living organisms. Whereas biologists have proposed models where the shape is controlled on a molecular level [1], physicists, following Turing [2] and d'Arcy Thomson [3], have developed theories where patterns arise spontaneously [4]. Here, we propose a volume constraint that restricts the possible shapes of leaves. Focusing on palmate leaves, the central observation is that developing leaves first grow folded inside a bud, limited by the previous and subsequent leaves. We show that growing folded in this small volume controls globally the leaf development. This induces a direct relationship between the way it was folded and the final unfolded shape of the leaf. These dependencies can be approximated as simple geometrical relationships that we confirm on both folded embryonic and unfolded mature leaves. We find that independently of their position in the phylogenetic tree, these relationships work for folded species, but do not work for non-folded species. This steric constraint is a simple way to impose a global regulation for the leaf growth. Such steric regulation should be more general and considered as a new simple means of global regulation.Comment: 6 pages 4 figures, Supplementary materials (8 pages, 7 figures

    Dune morphodynamics

    Get PDF

    When dunes move together, structure of deserts emerges

    Get PDF
    Crescent shaped barchan dunes are highly mobile dunes that are usually presented as a prototypical model of sand dunes. Although they have been theoretically shown to be unstable when considered separately, it is well known that they form large assemblies in desert. Collisions of dunes have been proposed as a mechanism to redistribute sand between dunes and prevent the formation of heavily large dunes, resulting in a stabilizing effect in the context of a dense barchan field. Yet, no models are able to explain the spatial structures of dunes observed in deserts. Here, we use an agent-based model with elementary rules of sand redistribution during collisions to access the full dynamics of very large barchan dune fields. Consequently, stationnary, out of equilibrium states emerge. Trigging the dune field density by a sand load/lost ratio, we show that large dune fields exhibit two assymtotic regimes: a dilute regime, where sand dune nucleation is needed to maintain a dune field, and a dense regime, where dune collisions allow to stabilize the whole dune field. In this dense regime, spatial structures form: the dune field is structured in narrow corridors of dunes extending in the wind direction, as observed in dense barchan deserts

    Fluid interfaces with very sharp tips in viscous flow

    Get PDF
    When a fluid interface is subjected to a strong viscous flow, it tends to develop near-conical ends with pointed tips so sharp that their radius of curvature is undetectable. In microfluidic applications, tips can be made to eject fine jets, from which micrometer-sized drops can be produced. Here we show theoretically that the opening angle of the conical interface varies on a logarithmic scale as a function of the distance from the tip, owing to nonlocal coupling between the tip and the external flow. Using this insight we are able to show that the tip curvature grows like the exponential of the square of the strength of the external flow and to calculate the universal shape of the interface near the tip. Our experiments confirm the scaling of the tip curvature as well as of the interface’s universal shape. Our analytical technique, based on an integral over the surface, may also have far wider applications, for example treating problems with electric fields, such as electrosprays

    Electrically induced tunable cohesion in granular systems

    Full text link
    Experimental observations of confined granular materials in the presence of an electric field that induces cohesive forces are reported. The angle of repose is found to increase with the cohesive force. A theoretical model for the stability of a granular heap, including both the effect of the sidewalls and cohesion is proposed. A good agreement between this model and the experimental results is found. The steady-state flow angle is practically unaffected by the electric field except for high field strengths and low flow rates.Comment: accepted for publication in "Journal of Statistical Mechanics: Theory and Experiment

    Spatial structuring and size selection as collective behaviours in an agent-based model for barchan fields.

    Get PDF
    International audienceIn order to test parameters of the peculiar dynamics occurring in barchan fields, and compute statistical analysis over large numbers of dunes, we build and study an agent-based model, which includes the well-known physics of an isolated barchan, and observations of interactions between dunes. We showed in a previous study that such a model, where barchans interact through short-range sand recapture and collisions, reproduces the peculiar behaviours of real fields, namely its spatial structuring along the wind direction, and the size selection by the local density. In this paper we focus on the mechanisms that drives these features. In particular, we show that eolian remote sand transfer between dunes ensures that a dense field structures itself into a very heterogeneous pattern, which alternates dense and diluted stripes in the wind direction. In these very dense clusters of dunes, the accumulation of collisions leads to the local emergence of a new size for the dunes
    • …
    corecore