111 research outputs found
Comment on ``Force Balance at the Transition from Selective Withdrawal to Viscous Entrainment
Comment on paper by Blanchette and Zhang, Phys. Rev. Lett. 102, 144501
(2009)
Steric Constraints as a Global Regulation of Growing Leaf Shape
Shape is one of the important characteristics for the structures observed in
living organisms. Whereas biologists have proposed models where the shape is
controlled on a molecular level [1], physicists, following Turing [2] and
d'Arcy Thomson [3], have developed theories where patterns arise spontaneously
[4]. Here, we propose a volume constraint that restricts the possible shapes of
leaves. Focusing on palmate leaves, the central observation is that developing
leaves first grow folded inside a bud, limited by the previous and subsequent
leaves. We show that growing folded in this small volume controls globally the
leaf development. This induces a direct relationship between the way it was
folded and the final unfolded shape of the leaf. These dependencies can be
approximated as simple geometrical relationships that we confirm on both folded
embryonic and unfolded mature leaves. We find that independently of their
position in the phylogenetic tree, these relationships work for folded species,
but do not work for non-folded species. This steric constraint is a simple way
to impose a global regulation for the leaf growth. Such steric regulation
should be more general and considered as a new simple means of global
regulation.Comment: 6 pages 4 figures, Supplementary materials (8 pages, 7 figures
When dunes move together, structure of deserts emerges
Crescent shaped barchan dunes are highly mobile dunes that are usually
presented as a prototypical model of sand dunes. Although they have been
theoretically shown to be unstable when considered separately, it is well known
that they form large assemblies in desert. Collisions of dunes have been
proposed as a mechanism to redistribute sand between dunes and prevent the
formation of heavily large dunes, resulting in a stabilizing effect in the
context of a dense barchan field. Yet, no models are able to explain the
spatial structures of dunes observed in deserts. Here, we use an agent-based
model with elementary rules of sand redistribution during collisions to access
the full dynamics of very large barchan dune fields. Consequently, stationnary,
out of equilibrium states emerge. Trigging the dune field density by a sand
load/lost ratio, we show that large dune fields exhibit two assymtotic regimes:
a dilute regime, where sand dune nucleation is needed to maintain a dune field,
and a dense regime, where dune collisions allow to stabilize the whole dune
field. In this dense regime, spatial structures form: the dune field is
structured in narrow corridors of dunes extending in the wind direction, as
observed in dense barchan deserts
Fluid interfaces with very sharp tips in viscous flow
When a fluid interface is subjected to a strong viscous flow, it tends to develop near-conical ends with pointed tips so sharp that their radius of curvature is undetectable. In microfluidic applications, tips can be made to eject fine jets, from which micrometer-sized drops can be produced. Here we show theoretically that the opening angle of the conical interface varies on a logarithmic scale as a function of the distance from the tip, owing to nonlocal coupling between the tip and the external flow. Using this insight we are able to show that the tip curvature grows like the exponential of the square of the strength of the external flow and to calculate the universal shape of the interface near the tip. Our experiments confirm the scaling of the tip curvature as well as of the interface’s universal shape. Our analytical technique, based on an integral over the surface, may also have far wider applications, for example treating problems with electric fields, such as electrosprays
Electrically induced tunable cohesion in granular systems
Experimental observations of confined granular materials in the presence of
an electric field that induces cohesive forces are reported. The angle of
repose is found to increase with the cohesive force. A theoretical model for
the stability of a granular heap, including both the effect of the sidewalls
and cohesion is proposed. A good agreement between this model and the
experimental results is found. The steady-state flow angle is practically
unaffected by the electric field except for high field strengths and low flow
rates.Comment: accepted for publication in "Journal of Statistical Mechanics: Theory
and Experiment
Spatial structuring and size selection as collective behaviours in an agent-based model for barchan fields.
International audienceIn order to test parameters of the peculiar dynamics occurring in barchan fields, and compute statistical analysis over large numbers of dunes, we build and study an agent-based model, which includes the well-known physics of an isolated barchan, and observations of interactions between dunes. We showed in a previous study that such a model, where barchans interact through short-range sand recapture and collisions, reproduces the peculiar behaviours of real fields, namely its spatial structuring along the wind direction, and the size selection by the local density. In this paper we focus on the mechanisms that drives these features. In particular, we show that eolian remote sand transfer between dunes ensures that a dense field structures itself into a very heterogeneous pattern, which alternates dense and diluted stripes in the wind direction. In these very dense clusters of dunes, the accumulation of collisions leads to the local emergence of a new size for the dunes
- …