5 research outputs found

    Modulation of sodium-coupled uptake and membrane fluidity by cisplatin in renal proximal tubular cells in primary culture and brush-border membrane vesicles

    Get PDF
    Modulation of sodium-coupled uptake and membrane fluidity by cisplatin in renal proximal tubular cells in primary culture and brush-border membrane vesicles. The proximal tubule appears to be the main target for the adverse effects of cis-diamminedichloroplatinum (II) (cDDP). We evaluated the early effects of cDDP at concentrations (3 to 67 µM) lower that those which alter cell viability, on three apical transport systems and on the physical state of the brush border membrane (BBM) in rabbit proximal tubule (RPT) cells in primary culture. The maximal effect, corresponding to a 30% decrease in Na+-coupled uptake of phosphate (Pi) and α-methylglucopyranoside (MGP) and a twofold increase in Na+-coupled alanine uptake, was obtained at 17 µM (5 µg/ml) cDDP and occurred through a modification of their affinity. At this concentration, cDDP increased BBM fluidity and decreased the BBM cholesterol content by 28%, without increasing the permeability of tight junctions. To clarify the role of cDDP-induced increase in BBM fluidity on alterations of Na+-coupled uptake, these parameters were also investigated in BBM vesicles isolated from rabbit renal cortex directly exposed to cDDP. cDDP induced a concentration-dependent inhibition of Na+-coupled uptake of MGP, Pi and alanine in BBM vesicles from the renal cortex, associated with a decrease in protein sulfhydryl content, without modifying BBM fluidity. Our findings strongly suggest that the cDDP-induced increase in BBM fluidity in RPT cells results from an indirect mechanism, possibly an alteration of cholesterol metabolism, and did not play a major role in the cDDP-induced inhibition of Na+/Pi and Na+/ glucose cotransport systems that may be mainly mediated through a direct chemical interaction with essential sulfhydryl groups of the transporters

    Polarized distribution of inducible nitric oxide synthase regulates activity in intestinal epithelial cells

    Get PDF
    Inducible nitric oxide synthase (iNOS) functions as a homodimer. In cell extracts, iNOS molecules partition both in cytosolic and particulate fractions, indicating that iNOS exists as soluble and membrane associated forms. In this study, iNOS features were investigated in human intestinal epithelial cells stimulated with cytokines and in duodenum from mice exposed to flagellin. Our experiments indicate that iNOS is mainly associated with the particulate fraction of cell extracts. Confocal microscopy showed a preferential localization of iNOS at the apical pole of intestinal epithelial cells. In particulate fractions, iNOS dimers were more abundant than in the cytosolic fraction. Similar observations were seen in mouse duodenum samples. These results suggest that, in epithelial cells, iNOS activity is regulated by localization-dependent processes.Facultad de Ciencias Exacta

    Polarized distribution of inducible nitric oxide synthase regulates activity in intestinal epithelial cells

    Get PDF
    Inducible nitric oxide synthase (iNOS) functions as a homodimer. In cell extracts, iNOS molecules partition both in cytosolic and particulate fractions, indicating that iNOS exists as soluble and membrane associated forms. In this study, iNOS features were investigated in human intestinal epithelial cells stimulated with cytokines and in duodenum from mice exposed to flagellin. Our experiments indicate that iNOS is mainly associated with the particulate fraction of cell extracts. Confocal microscopy showed a preferential localization of iNOS at the apical pole of intestinal epithelial cells. In particulate fractions, iNOS dimers were more abundant than in the cytosolic fraction. Similar observations were seen in mouse duodenum samples. These results suggest that, in epithelial cells, iNOS activity is regulated by localization-dependent processes.Facultad de Ciencias Exacta

    Caveolin-1 down-regulates inducible nitric oxide synthase via the proteasome pathway in human colon carcinoma cells

    No full text
    To investigate whether caveolin-1 (cav-1) may modulate inducible nitric oxide synthase (iNOS) function in intact cells, the human intestinal carcinoma cell lines HT29 and DLD1 that have low endogenous cav-1 levels were transfected with cav-1 cDNA. In nontransfected cells, iNOS mRNA and protein levels were increased by the addition of a mix of cytokines. Ectopic expression of cav-1 in both cell lines correlated with significantly decreased iNOS activity and protein levels. This effect was linked to a posttranscriptional mechanism involving enhanced iNOS protein degradation by the proteasome pathway, because (i) induction of iNOS mRNA by cytokines was not affected and (ii) iNOS protein levels increased in the presence of the proteasome inhibitors N-acetyl-Leu-Leu-Norleucinal and lactacystin. In addition, a small amount of iNOS was found to cofractionate with cav-1 in Triton X-100-insoluble membrane fractions where also iNOS degradation was apparent. As has been described for endothelial and neuronal NOS isoenzymes, direct binding between cav-1 and human iNOS was detected in vitro. Taken together, these results suggest that cav-1 promotes iNOS presence in detergent-insoluble membrane fractions and degradation there via the proteasome pathway
    corecore