12 research outputs found

    Estrogen Receptor α Signaling in Inflammatory Leukocytes Is Dispensable for 17β-Estradiol-Mediated Inhibition of Experimental Autoimmune Encephalomyelitis

    No full text
    Estrogen treatment has been shown to exert a protective effect on experimental autoimmune encephalomyelitis (EAE), and is under clinical trial for multiple sclerosis. Although it is commonly assumed that estrogens exert their effect by modulating immune functions, we show in this study that 17beta-estradiol (E2) treatment can inhibit mouse EAE without affecting autoantigen-specific T cell responsiveness and type 1 cytokine production. Using mutant mice in which estrogen receptor alpha (ERalpha) has been unambiguously inactivated, we found that ERalpha was responsible for the E2-mediated inhibition of EAE. We next generated irradiation bone marrow chimeras in which ERalpha expression was selectively impaired in inflammatory T lymphocytes or was limited to the radiosensitive hemopoietic compartment. Our data show that the protective effect of E2 on clinical EAE and CNS inflammation was not dependent on ERalpha signaling in inflammatory T cells. Likewise, EAE development was not prevented by E2 treatment in chimeric mice that selectively expressed ERalpha in the systemic immune compartment. In conclusion, our data demonstrate that the beneficial effect of E2 on this autoimmune disease does not involve ERalpha signaling in blood-derived inflammatory cells, and indicate that ERalpha expressed in other tissues, such as CNS-resident microglia or endothelial cells, mediates this effect

    Estrogen receptor alpha signaling in inflammatory leukocytes is dispensable for 17beta-estradiol-mediated inhibition of experimental autoimmune encephalomyelitis

    No full text
    Estrogen treatment has been shown to exert a protective effect on experimental autoimmune encephalomyelitis (EAE), and is under clinical trial for multiple sclerosis. Although it is commonly assumed that estrogens exert their effect by modulating immune functions, we show in this study that 17beta-estradiol (E2) treatment can inhibit mouse EAE without affecting autoantigen-specific T cell responsiveness and type 1 cytokine production. Using mutant mice in which estrogen receptor alpha (ERalpha) has been unambiguously inactivated, we found that ERalpha was responsible for the E2-mediated inhibition of EAE. We next generated irradiation bone marrow chimeras in which ERalpha expression was selectively impaired in inflammatory T lymphocytes or was limited to the radiosensitive hemopoietic compartment. Our data show that the protective effect of E2 on clinical EAE and CNS inflammation was not dependent on ERalpha signaling in inflammatory T cells. Likewise, EAE development was not prevented by E2 treatment in chimeric mice that selectively expressed ERalpha in the systemic immune compartment. In conclusion, our data demonstrate that the beneficial effect of E2 on this autoimmune disease does not involve ERalpha signaling in blood-derived inflammatory cells, and indicate that ERalpha expressed in other tissues, such as CNS-resident microglia or endothelial cells, mediates this effect

    CD8+ T-cell-mediated killing of donor dendritic cells prevents alloreactive T helper type-2 responses in vivo.

    No full text
    International audienceAccumulating evidence indicates that, in absence of CD8+ T-cell activation, CD4+ T-cell-mediated allograft rejection is associated with a dominant Th2-cell response and eosinophil infiltrates. In this study, we analyzed the mechanisms by which CD8+ T cells regulate alloreactive CD4+ T-cell priming and differentiation into interleukin 4 (IL-4)-producing cells. We showed that interferon gamma (IFN-gamma) production by CD8+ T cells was dispensable for the inhibition of Th2-cell development, as well as tissue eosinophilia and type 2 cytokine production in the rejected grafts. Since we noticed that CD8+ T cells not only suppressed Th2 differentiation, but also down-modulated the overall priming of alloreactive CD4+ T cells, we evaluated whether CD8+ T cells act by limiting the accumulation of donor-derived dendritic cells (DCs) in lymph nodes. We found that indeed, alloreactive CD8+ T cells rapidly eliminated allogeneic DCs from T-cell areas of draining lymph nodes, through a perforin-dependent mechanism. Thus, our data demonstrate that cytotoxic T lymphocyte (CTL)-mediated clearance of allogeneic DCs is a negative feedback mechanism that limits the duration of alloantigen presentation in draining lymph nodes, thereby modulating the amplitude and polarization of the primary alloreactive CD4+ T-cell responses
    corecore