1,195 research outputs found
Neutron-Diffraction Measurements of an Antiferromagnetic Semiconducting Phase in the Vicinity of the High-Temperature Superconducting State of KFeSe
The recently discovered K-Fe-Se high temperature superconductor has caused
heated debate regarding the nature of its parent compound. Transport,
angle-resolved photoemission spectroscopy, and STM measurements have suggested
that its parent compound could be insulating, semiconducting or even metallic
[M. H. Fang, H.-D. Wang, C.-H. Dong, Z.-J. Li, C.-M. Feng, J. Chen, and H. Q.
Yuan, Europhys. Lett. 94, 27009 (2011); F. Chen et al. Phys. Rev. X 1, 021020
(2011); and W. Li et al.,Phys. Rev. Lett. 109, 057003 (2012)]. Because the
magnetic ground states associated with these different phases have not yet been
identified and the relationship between magnetism and superconductivity is not
fully understood, the real parent compound of this system remains elusive.
Here, we report neutron-diffraction experiments that reveal a semiconducting
antiferromagnetic (AFM) phase with rhombus iron vacancy order. The magnetic
order of the semiconducting phase is the same as the stripe AFM order of the
iron pnictide parent compounds. Moreover, while the root5*root5 block AFM phase
coexists with superconductivity, the stripe AFM order is suppressed by it. This
leads us to conjecture that the new semiconducting magnetic ordered phase is
the true parent phase of this superconductor.Comment: 1 table, 4 figures,5 page
Recommended from our members
The ASD Living Biology: from cell proliferation to clinical phenotype.
Autism spectrum disorder (ASD) has captured the attention of scientists, clinicians and the lay public because of its uncertain origins and striking and unexplained clinical heterogeneity. Here we review genetic, genomic, cellular, postmortem, animal model, and cell model evidence that shows ASD begins in the womb. This evidence leads to a new theory that ASD is a multistage, progressive disorder of brain development, spanning nearly all of prenatal life. ASD can begin as early as the 1st and 2nd trimester with disruption of cell proliferation and differentiation. It continues with disruption of neural migration, laminar disorganization, altered neuron maturation and neurite outgrowth, disruption of synaptogenesis and reduced neural network functioning. Among the most commonly reported high-confidence ASD (hcASD) genes, 94% express during prenatal life and affect these fetal processes in neocortex, amygdala, hippocampus, striatum and cerebellum. A majority of hcASD genes are pleiotropic, and affect proliferation/differentiation and/or synapse development. Proliferation and subsequent fetal stages can also be disrupted by maternal immune activation in the 1st trimester. Commonly implicated pathways, PI3K/AKT and RAS/ERK, are also pleiotropic and affect multiple fetal processes from proliferation through synapse and neural functional development. In different ASD individuals, variation in how and when these pleiotropic pathways are dysregulated, will lead to different, even opposing effects, producing prenatal as well as later neural and clinical heterogeneity. Thus, the pathogenesis of ASD is not set at one point in time and does not reside in one process, but rather is a cascade of prenatal pathogenic processes in the vast majority of ASD toddlers. Despite this new knowledge and theory that ASD biology begins in the womb, current research methods have not provided individualized information: What are the fetal processes and early-age molecular and cellular differences that underlie ASD in each individual child? Without such individualized knowledge, rapid advances in biological-based diagnostic, prognostic, and precision medicine treatments cannot occur. Missing, therefore, is what we call ASD Living Biology. This is a conceptual and paradigm shift towards a focus on the abnormal prenatal processes underlying ASD within each living individual. The concept emphasizes the specific need for foundational knowledge of a living child's development from abnormal prenatal beginnings to early clinical stages. The ASD Living Biology paradigm seeks this knowledge by linking genetic and in vitro prenatal molecular, cellular and neural measurements with in vivo post-natal molecular, neural and clinical presentation and progression in each ASD child. We review the first such study, which confirms the multistage fetal nature of ASD and provides the first in vitro fetal-stage explanation for in vivo early brain overgrowth. Within-child ASD Living Biology is a novel research concept we coin here that advocates the integration of in vitro prenatal and in vivo early post-natal information to generate individualized and group-level explanations, clinically useful prognoses, and precision medicine approaches that are truly beneficial for the individual infant and toddler with ASD
Two spatially separated phases in semiconducting RbFeS
We report neutron scattering and transport measurements on semiconducting
RbFeS, a compound isostructural and isoelectronic to the
well-studied FeSe K, Rb, Cs, Tl/K) superconducting
systems. Both resistivity and DC susceptibility measurements reveal a magnetic
phase transition at K. Neutron diffraction studies show that the 275 K
transition originates from a phase with rhombic iron vacancy order which
exhibits an in-plane stripe antiferromagnetic ordering below 275 K. In
addition, interdigitated mesoscopically with the rhombic phase is an ubiquitous
phase with iron vacancy order. This phase has a
magnetic transition at K and an iron vacancy order-disorder
transition at K. These two different structural phases are closely
similar to those observed in the isomorphous Se materials. Based on the close
similarities of the in-plane antiferromagnetic structures, moments sizes, and
ordering temperatures in semiconducting RbFeS and
KFeSe, we argue that the in-plane antiferromagnetic order
arises from strong coupling between local moments. Superconductivity,
previously observed in the FeSeS system, is absent
in RbFeS, which has a semiconducting ground state. The
implied relationship between stripe/block antiferromagnetism and
superconductivity in these materials as well as a strategy for further
investigation is discussed in this paper.Comment: 7 pages, 5 figure
Universal magnetic and structural behaviors in the iron arsenides
Commonalities among the order parameters of the ubiquitous antiferromagnetism
present in the parent compounds of the iron arsenide high temperature
superconductors are explored. Additionally, comparison is made between the well
established two-dimensional Heisenberg-Ising magnet, KNiF and iron
arsenide systems residing at a critical point whose structural and magnetic
phase transitions coincide. In particular, analysis is presented regarding two
distinct classes of phase transition behavior reflected in the development of
antiferromagnetic and structural order in the three main classes of iron
arsenide superconductors. Two distinct universality classes are mirrored in
their magnetic phase transitions which empirically are determined by the
proximity of the coupled structural and magnetic phase transitions in these
materials.Comment: 6 pages, 4 figure
Antiferromagnetic Critical Fluctuations in BaFeAs
Magnetic correlations near the magneto-structural phase transition in the
bilayer iron pnictide parent compound, BaFeAs, are measured. In close
proximity to the antiferromagnetic phase transition in BaFeAs, a
crossover to three dimensional critical behavior is anticipated and has been
preliminarily observed. Here we report complementary measurements of
two-dimensional magnetic fluctuations over a broad temperature range about
T. The potential role of two-dimensional critical fluctuations in the
magnetic phase behavior of BaFeAs and their evolution near the
anticipated crossover to three dimensional critical behavior and long-range
order are discussed.Comment: 6 pages, 4 figures; Accepted for publication in Physical Review
Heat capacity study of BaFeAs: effects of annealing
Heat-capacity, X-ray diffraction, and resistivity measurements on a
high-quality BaFeAs sample show an evolution of the
magneto-structural transition with successive annealing periods. After a 30-day
anneal the resistivity in the (ab) plane decreases by more than an order of
magnitude, to 12 cm, with a residual resistance ratio 36; the
heat-capacity anomaly at the transition sharpens, to an overall width of less
than K, and shifts from 135.4 to 140.2 K. The heat-capacity anomaly in both the
as-grown sample and after the 30-day anneal shows a hysteresis of 0.15 K,
and is unchanged in a magnetic field H = 14 T. The X-ray and
heat-capacity data combined suggest that there is a first order jump in the
structural order parameter. The entropy of the transition is reported
Bandwidth and Electron Correlation-Tuned Superconductivity in RbFe(SeS)
We present a systematic angle-resolved photoemission spectroscopy study of
the substitution-dependence of the electronic structure of
RbFe(SeS) (z = 0, 0.5, 1), where
superconductivity is continuously suppressed into a metallic phase. Going from
the non-superconducting RbFe(SeS) to
superconducting RbFeSe, we observe little change of the Fermi
surface topology, but a reduction of the overall bandwidth by a factor of 2 as
well as an increase of the orbital-dependent renormalization in the
orbital. Hence for these heavily electron-doped iron chalcogenides, we have
identified electron correlation as explicitly manifested in the quasiparticle
bandwidth to be the important tuning parameter for superconductivity, and that
moderate correlation is essential to achieving high
Magnetic order tuned by Cu substitution in Fe1.1-zCuzTe
We study the effects of Cu substitution in Fe1.1Te, the non-superconducting
parent compound of the iron-based superconductor, Fe1+yTe1-xSex, utilizing
neutron scattering techniques. It is found that the structural and magnetic
transitions, which occur at \sim 60 K without Cu, are monotonically depressed
with increasing Cu content. By 10% Cu for Fe, the structural transition is
hardly detectable, and the system becomes a spin glass below 22 K, with a
slightly incommensurate ordering wave vector of (0.5-d, 0, 0.5) with d being
the incommensurability of 0.02, and correlation length of 12 angstrom along the
a axis and 9 angstrom along the c axis. With 4% Cu, both transition
temperatures are at 41 K, though short-range incommensurate order at (0.42, 0,
0.5) is present at 60 K. With further cooling, the incommensurability decreases
linearly with temperature down to 37 K, below which there is a first order
transition to a long-range almost-commensurate antiferromagnetic structure. A
spin anisotropy gap of 4.5 meV is also observed in this compound. Our results
show that the weakly magnetic Cu has large effects on the magnetic
correlations; it is suggested that this is caused by the frustration of the
exchange interactions between the coupled Fe spins.Comment: 7 pages, 7 figures, version as appeared on PR
- …