1,711 research outputs found

    Regulation and Identity of Florigen: Flowering Locus T Moves Center Stage

    Get PDF
    The transition from vegetative to reproductive growth is controlled by day length in many plant species. Day length is perceived in leaves and induces a systemic signal, called florigen, that moves through the phloem to the shoot apex. At the shoot apical meristem (SAM), florigen causes changes in gene expression that reprogram the SAM to form flowers instead of leaves. Analysis of flowering of Arabidopsis thaliana placed the CONSTANS/FLOWERING LOCUS T (CO/FT) module at the core of a pathway that promotes flowering in response to changes in day length. We describe progress in defining the molecular mechanisms that activate this module in response to changing day length and the increasing evidence that FT protein is a major component of florigen. Finally, we discuss conservation of FT function in other species and how variation in its regulation could generate different flowering behaviors

    FLOWERING LOCUS C Isolation and Characterization: Two Articles That Opened Many Doors

    No full text

    Competence to Flower: Age-Controlled Sensitivity to Environmental Cues.

    No full text
    miR156 and SPL transcription factors play various roles in conferring competence to flower in plants

    Mastery Learning: Improving the Model

    Full text link
    In this paper, we report on developments in the Mastery Learning (ML) curriculum and assessment model that has been successfully implemented in a metropolitan university for teaching first-year mathematics. Initial responses to ML were positive; however, we ask whether the nature of the ML tests encourages a focus on shallow learning of procedures, and whether the structure of the assessment regime provides sufficient motivation for learning more complex problem solving. We analysed assessment data, as well as student reports and survey responses in an attempt to answer these questions

    Mathematics for Engineering Education: What Students Say

    Full text link

    The Influence of in-medium NN cross-sections, symmetry potential and impact parameter on the isospin observables

    Full text link
    We explore the influence of in-medium nucleon-nucleon cross section, symmetry potential and impact parameter on isospin sensitive observables in intermediate-energy heavy-ion collisions with the ImQMD05 code, a modified version of Quantum Molecular Dynamics model. At incident velocities above the Fermi velocity, we find that the density dependence of symmetry potential plays a more important role on the double neutron to proton ratio DR(n/p)DR(n/p) and the isospin transport ratio RiR_i than the in-medium nucleon-nucleon cross sections, provided that the latter are constrained to a fixed total NN collision rate. We also explore both DR(n/p)DR(n/p) and RiR_i as a function of the impact parameter. Since the copious production of intermediate mass fragments is a distinguishing feature of intermediate-energy heavy-ion collisions, we examine the isospin transport ratios constructed from different groups of fragments. We find that the values of the isospin transport ratios for projectile rapidity fragments with Z≥20Z\ge20 are greater than those constructed from the entire projectile rapidity source. We believe experimental investigations of this phenomenon can be performed. These may provide significant tests of fragmentation time scales predicted by ImQMD calculations.Comment: 24 pages, 9 figures, to be published in Phys. Rev.
    • …
    corecore