5 research outputs found

    Single-shot betatron source size measurement from a laser-wakefield accelerator

    No full text
    Betatron radiation emitted by accelerated electrons in laser-wakefield accelerators can be used as a diagnostic tool to investigate electron dynamics during the acceleration process. We analyze the spectral characteristics of the emitted Betatron pattern utilizing a 2D x-ray imaging spectroscopy technique. Together with simultaneously recorded electron spectra and x-ray images, the betatron source size, thus the electron beam radius, can be deduced at every shot

    Hybrid LWFA \vert PWFA Staging as a Beam Energy and Brightness Transformer : Conceptual Design and Simulations

    Get PDF
    International audienceWe present a conceptual design for a hybrid laser-driven plasma wakefield accelerator (LWFA) to beam-driven plasma wakefield accelerator (PWFA). In this set-up, the output beams from an LWFA stage ..

    Stable and high quality electron beams from staged laser and plasma wakefield accelerators

    Get PDF
    We present experimental results on a plasma wakefield accelerator (PWFA) driven by high-current electron beams from a laser wakefield accelerator (LWFA). In this staged setup stable and high quality (low divergence and low energy spread) electron beams are generated at an optically-generated hydrodynamic shock in the PWFA. The energy stability of the beams produced by that arrangement in the PWFA stage is comparable to both single-stage laser accelerators and plasma wakefield accelerators driven by conventional accelerators. Simulations support that the intrinsic insensitivity of PWFAs to driver energy fluctuations can be exploited to overcome stability limitations of state-of-the-art laser wakefield accelerators when adding a PWFA stage. Furthermore, we demonstrate the generation of electron bunches with energy spread and divergence superior to single-stage LW-FAs, resulting in bunches with dense phase space and an angular-spectral charge density beyond the initial drive beam parameters. These results unambiguously show that staged LWFA-PWFA can help to tailor the electron-beam quality for certain applications and to reduce the influence of fluctuating laser drivers on the electron-beam stability. This encourages further development of this new class of staged wakefield acceleration as a viable scheme towards compact, high-quality electron beam sources

    Demonstration of a compact plasma accelerator powered by laser-accelerated electron beams

    No full text
    Plasma wakefield accelerators are capable of sustaining gigavolt-per-centimeter accelerating fields, surpassing the electric breakdown threshold in state-of-the-art accelerator modules by 3-4 orders of magnitude. Beam-driven wakefields offer particularly attractive conditions for the generation and acceleration of high-quality beams. However, this scheme relies on kilometer-scale accelerators. Here, we report on the demonstration of a millimeter-scale plasma accelerator powered by laser-accelerated electron beams. We showcase the acceleration of electron beams to 130 MeV, consistent with simulations exhibiting accelerating gradients exceeding 100 GV/m. This miniaturized accelerator is further explored by employing a controlled pair of drive and witness electron bunches, where a fraction of the driver energy is transferred to the accelerated witness through the plasma. Such a hybrid approach allows fundamental studies of beam-driven plasma accelerator concepts at widely accessible high-power laser facilities. It is anticipated to provide compact sources of energetic high-brightness electron beams for quality-demanding applications such as free-electron lasers

    Probing Ultrafast Magnetic-Field Generation by Current Filamentation Instability in Femtosecond Relativistic Laser-Matter Interactions

    Get PDF
    We present experimental measurements of the femtosecond time-scale generation of strong magnetic-field fluctuations during the interaction of ultrashort, moderately relativistic laser pulses with solid targets. These fields were probed using low-emittance, highly relativistic electron bunches from a laser wakefield accelerator, and a line-integrated BB-field of 2.70±0.39kTμm2.70 \pm 0.39\,\rm kT\,\mu m was measured. Three-dimensional, fully relativistic particle-in-cell simulations indicate that such fluctuations originate from a Weibel-type current filamentation instability developing at submicron scales around the irradiated target surface, and that they grow to amplitudes strong enough to broaden the angular distribution of the probe electron bunch a few tens of femtoseconds after the laser pulse maximum. Our results highlight the potential of wakefield-accelerated electron beams for ultrafast probing of relativistic laser-driven phenomena
    corecore