61 research outputs found
Restoring brain function after stroke - bridging the gap between animals and humans
Stroke is the leading cause of complex adult disability in the world. Recovery from stroke is often incomplete, which leaves many people dependent on others for their care. The improvement of long-term outcomes should, therefore, be a clinical and research priority. As a result of advances in our understanding of the biological mechanisms involved in recovery and repair after stroke, therapeutic opportunities to promote recovery through manipulation of poststroke plasticity have never been greater. This work has almost exclusively been carried out in preclinical animal models of stroke with little translation into human studies. The challenge ahead is to develop a mechanistic understanding of recovery from stroke in humans. Advances in neuroimaging techniques now enable us to reconcile behavioural accounts of recovery with molecular and cellular changes. Consequently, clinical trials can be designed in a stratified manner that takes into account when an intervention should be delivered and who is most likely to benefit. This approach is expected to lead to a substantial change in how restorative therapeutic strategies are delivered in patients after stroke
Large-scale evaluation of outcomes after a genetic diagnosis in children with severe developmental disorders
Purpose
We sought to evaluate outcomes for clinical management after a genetic diagnosis from the Deciphering Developmental Disorders study.
Methods
Individuals in the Deciphering Developmental Disorders study who had a pathogenic/likely pathogenic genotype in the DECIPHER database were selected for inclusion (n = 5010). Clinical notes from regional clinical genetics services notes were reviewed to assess predefined clinical outcomes relating to interventions, prenatal choices, and information provision.
Results
Outcomes were recorded for 4237 diagnosed probands (85% of those eligible) from all 24 recruiting centers across the United Kingdom and Ireland. Clinical management was reported to have changed in 28% of affected individuals. Where individual-level interventions were recorded, additional diagnostic or screening tests were started in 903 (21%) probands through referral to a range of different clinical specialties, and stopped or avoided in a further 26 (0.6%). Disease-specific treatment was started in 85 (2%) probands, including seizure-control medications and dietary supplements, and contra-indicated medications were stopped or avoided in a further 20 (0.5%). The option of prenatal/preimplantation genetic testing was discussed with 1204 (28%) families, despite the relatively advanced age of the parents at the time of diagnosis. Importantly, condition-specific information or literature was given to 3214 (76%) families, and 880 (21%) were involved in family support groups. In the most common condition (KBG syndrome; 79 [2%] probands), clinical interventions only partially reflected the temporal development of phenotypes, highlighting the importance of consensus management guidelines and patient support groups.
Conclusion
Our results underscore the importance of achieving a clinico-molecular diagnosis to ensure timely onward referral of patients, enabling appropriate care and anticipatory surveillance, and for accessing relevant patient support groups
Antibody responses and protective immunity to recombinant vaccinia virus-expressed bluetongue virus antigens
The role of individual viral proteins in the immune response to bluetongue virus (BTV) is not clearly understood. To investigate the contributions of the outer capsid proteins, VP2 and VP5, and possible interactions between them, these proteins were expressed from recombinant vaccinia viruses either as individual proteins or together in double recombinants, or with the core protein VP7 in a triple recombinant. Comparison of the immunogenicity of the vaccinia expressed proteins with BTV expressed proteins was carried out by inoculation of rabbits and sheep. Each of the recombinants was capable of stimulating an anti-BTV antibody response, although there was a wide range in the level of response between animals and species. Vaccinia-expressed VP2 was poorly immunogenic, particularly in rabbits. VP5, on the whole, stimulated higher ELISA titers in rabbits and sheep and in some animals in both species was able to stimulate virus neutralizing antibodies. When the protective efficacy of VP2 and VP5 was tested in sheep, vaccinia-expressed VP2, VP5 and VP2 + VP5 were protective, with the most consistent protection being in groups immunized with both proteins. (C) 1997 Elsevier Science B.V
Efficacy of DNA and Fowlpox Virus Priming/Boosting Vaccines for Simian/Human Immunodeficiency Virus
Further advances are required in understanding protection from AIDS by T-cell immunity. We analyzed a set of multigenic simian/human immunodeficiency virus (SHIV) DNA and fowlpox virus priming and boosting vaccines for immunogenicity and protective efficacy in outbred pigtail macaques. The number of vaccinations required, the effect of DNA vaccination alone, and the effect of cytokine (gamma interferon) coexpression by the fowlpox virus boost was also studied. A coordinated induction of high levels of broadly reactive CD4 and CD8 T-cell immune responses was induced by sequential DNA and fowlpox virus vaccination. The immunogenicity of regimens utilizing fowlpox virus coexpressing gamma interferon, a single DNA priming vaccination, or DNA vaccines alone was inferior. Significant control of a virulent SHIV challenge was observed despite a loss of SHIV-specific proliferating T cells. The outcome of challenge with virulent SHIV(mn229) correlated with vaccine immunogenicity except that DNA vaccination alone primed for protection almost as effectively as the DNA/fowlpox virus regimen despite negligible immunogenicity by standard assays. These studies suggest that priming of immunity with DNA and fowlpox virus vaccines could delay AIDS in humans
- …