127 research outputs found

    Anticipating surprises: Climate extremes in the next decade

    Get PDF

    Record monthly-temperature extremes

    Get PDF
    Póster presentado en: VIII Congreso de la Asociación Española de Climatología celebrado en Salamanca entre el 25 y el 28 de septiembre de 2012

    Regional Changes in the Mean Position and Variability of the Tropical Edge

    Get PDF
    Recent studies indicate that the tropical belt has been expanding during recent decades, which can significantly influence precipitation in subtropical climates. Often the location of the tropical border is identified using the Hadley cell edge (HCE) or the subtropical jet stream (STJ), but most studies concentrated on the zonal-mean state, thereby missing regional impacts. Here we detect longitudinal-resolved trends in STJ cores and HCEs over 1979–2016 in both hemispheres at a higher spatial and temporal resolution than previous studies. Besides pronounced regional trend differences in both sign and magnitude, we show that winter HCE and STJ variability increased in the Mediterranean region and decreased over the American and Asian continents. Rainfall variability in these regions changed likewise, and most of those changes can be explained by changes in HCE/STJ variability. This highlights the importance of understanding future tropical belt changes both regionally and in terms of variability

    The Influence of Arctic Amplification on Mid-latitude Summer Circulation

    Get PDF
    Accelerated warming in the Arctic, as compared to the rest of the globe, might have profound impacts on mid-latitude weather. Most studies analyzing Arctic links to mid-latitude weather focused on winter, yet recent summers have seen strong reductions in sea-ice extent and snow cover, a weakened equator-to-pole thermal gradient and associated weakening of the mid-latitude circulation. We review the scientific evidence behind three leading hypotheses on the influence of Arctic changes on mid-latitude summer weather: Weakened storm tracks, shifted jet streams, and amplified quasi-stationary waves. We show that interactions between Arctic teleconnections and other remote and regional feedback processes could lead to more persistent hot-dry extremes in the mid-latitudes. The exact nature of these non-linear interactions is not well quantified but they provide potential high-impact risks for society

    Sub-synoptic circulation variability in the Himalayan extreme precipitation event during June 2013

    Get PDF
    This study investigates the sub-synoptic scale circulation aspects associated with the extreme rainfall event occurred over the North Indian state of Uttarakhand located in the western Himalayas (WH) during the 15–18 June 2013 period. A diagnosis based on hourly ERA5 reanalyzed circulation products archived on finer grids reveals that sustenance of heavy rains during the event period is supported by a propensity of cyclonic vorticity sources channeled toward the WH region through a narrow quasi-steady conduit in the lower troposphere from the ISM circulation. The equatorward segregating mesoscale potential vorticity (PV) structures from the quasi-stationary upper level PV anomaly (trough) during the event administered two pathways for vorticity sources. The first pathway is from the base of the trough culminating into longer horizontal conduit path from the western Arabian Sea, lending perpetual cyclonic vorticity support to the ISM environment. The second pathway is from the right flank of the trough, which promotes sustained environment of deeper mesoscale convergence zone, potentially unstable atmosphere and strong ascent over the Uttarakhand region. The convergence zone is potentially viewed as a region for strong monsoon and extratropical circulation interactions to occur on finer horizontal scales of motion, where significant vertical synchronization of positive PV advection is realized during the 16–17 June 2013 period. In addition to orographic precipitation enhancements, deeper advective synchronization noticed at sub-synoptic time periods is accredited to the nearly doubling 24-h rainfall amounts in the foothill region of Uttarakhand during the event period. The ERA5 diagnosed diabatic heating additionally indicates that precipitating systems at higher (foothill) elevations contribute to upper (lower) tropospheric heat sources
    • …
    corecore