78 research outputs found

    Interview with Dr Sarah Coulthurst

    Get PDF

    A New Front in Microbial Warfare—Delivery of Antifungal Effectors by the Type VI Secretion System

    Get PDF
    Microbes typically exist in mixed communities and display complex synergistic and antagonistic interactions. The Type VI secretion system (T6SS) is widespread in Gram-negative bacteria and represents a contractile nano-machine that can fire effector proteins directly into neighbouring cells. The primary role assigned to the T6SS is to function as a potent weapon during inter-bacterial competition, delivering antibacterial effectors into rival bacterial cells. However, it has recently emerged that the T6SS can also be used as a powerful weapon against fungal competitors, and the first fungal-specific T6SS effector proteins, Tfe1 and Tfe2, have been identified. These effectors act via distinct mechanisms against a variety of fungal species to cause cell death. Tfe1 intoxication triggers plasma membrane depolarisation, whilst Tfe2 disrupts nutrient uptake and induces autophagy. Based on the frequent coexistence of bacteria and fungi in microbial communities, we propose that T6SS-dependent antifungal activity is likely to be widespread and elicited by a suite of antifungal effectors. Supporting this hypothesis, homologues of Tfe1 and Tfe2 are found in other bacterial species, and a number of T6SS-elaborating species have been demonstrated to interact with fungi. Thus, we envisage that antifungal T6SS will shape many polymicrobial communities, including the human microbiota and disease-causing infections

    The ecological impact of a bacterial weapon:microbial interactions and the Type VI secretion system

    Get PDF
    Bacteria inhabit all known ecological niches and establish interactions with organisms from all kingdoms of life. These interactions are mediated by a wide variety of mechanisms and very often involve the secretion of diverse molecules from the bacterial cells. The Type VI secretion system (T6SS) is a bacterial protein secretion system that uses a bacteriophage-like machinery to secrete a diverse array of effectors, usually translocating them directly into neighbouring cells. These effectors display toxic activity in the recipient cell, making the T6SS an effective weapon during inter-bacterial competition and interactions with eukaryotic cells. Over the last two decades, microbiology research has experienced a shift towards using systems-based approaches to study the interactions between diverse organisms and their communities in an ecological context. Here, we focus on this aspect of the T6SS. We consider how our perspective of the T6SS has developed and examine what is currently known about the impact that bacteria deploying the T6SS can have in diverse environments, including niches associated with plants, insects and mammals. We consider how T6SS-mediated interactions can affect host organisms by shaping their microbiota, as well as the diverse interactions that can be established between different microorganisms through the deployment of this versatile secretion system

    Molecular weaponry:diverse effectors delivered by the Type VI secretion system

    Get PDF
    The Type VI secretion system is a widespread bacterial nanomachine, used to deliver toxins directly into eukaryotic or prokaryotic target cells. These secreted toxins, or effectors, act on diverse cellular targets, and their action provides the attacking bacterial cell with a significant fitness advantage, either against rival bacteria or eukaryotic host organisms. In this review, we discuss the delivery of diverse effectors by the Type VI secretion system, the modes of action of the so‐called ‘anti‐bacterial’ and ‘anti‐eukaryotic’ effectors, the mechanism of self‐resistance against anti‐bacterial effectors and the evolutionary implications of horizontal transfer of Type VI secretion system‐associated toxins. Whilst it is likely that many more effectors remain to be identified, it is already clear that toxins delivered by this secretion system represent efficient weapons against both bacteria and eukaryotes

    The insect pathogen Serratia marcescens Db10 uses a hybrid non-ribosomal peptide synthetase-polyketide synthase to produce the antibiotic althiomycin

    Get PDF
    There is a continuing need to discover new bioactive natural products, such as antibiotics, in genetically-amenable micro-organisms. We observed that the enteric insect pathogen, Serratia marcescens Db10, produced a diffusible compound that inhibited the growth of Bacillis subtilis and Staphyloccocus aureus. Mapping the genetic locus required for this activity revealed a putative natural product biosynthetic gene cluster, further defined to a six-gene operon named alb1-alb6. Bioinformatic analysis of the proteins encoded by alb1-6 predicted a hybrid non-ribosomal peptide synthetase-polyketide synthase (NRPS-PKS) assembly line (Alb4/5/6), tailoring enzymes (Alb2/3) and an export/resistance protein (Alb1), and suggested that the machinery assembled althiomycin or a related molecule. Althiomycin is a ribosome-inhibiting antibiotic whose biosynthetic machinery had been elusive for decades. Chromatographic and spectroscopic analyses confirmed that wild type S. marcescens produced althiomycin and that production was eliminated on disruption of the alb gene cluster. Construction of mutants with in-frame deletions of specific alb genes demonstrated that Alb2-Alb5 were essential for althiomycin production, whereas Alb6 was required for maximal production of the antibiotic. A phosphopantetheinyl transferase enzyme required for althiomycin biosynthesis was also identified. Expression of Alb1, a predicted major facilitator superfamily efflux pump, conferred althiomycin resistance on another, sensitive, strain of S. marcescens. This is the first report of althiomycin production outside of the Myxobacteria or Streptomyces and paves the way for future exploitation of the biosynthetic machinery, since S. marcescens represents a convenient and tractable producing organism

    The role of the phosphopantetheinyltransferase enzyme, PswP, in the biosynthesis of antimicrobial secondary metabolites by <em>Serratia marcescens </em>Db10

    Get PDF
    Phosphopantetheinyltransferase (PPTase) enzymes fulfil essential roles in primary and secondary metabolism in prokaryotes, archaea and eukaryotes. PPTase enzymes catalyse the essential modification of the carrier protein domain of fatty acid synthases, polyketide synthases (PKSs) and non-ribosomal peptide synthetases (NRPSs). In bacteria and fungi, NRPS and PKS enzymes are often responsible for the biosynthesis of secondary metabolites with clinically relevant properties; these secondary metabolites include a variety of antimicrobial peptides. We have previously shown that in the Gram-negative bacterium Serratia marcescens Db10, the PPTase enzyme PswP is essential for the biosynthesis of an NRPS-PKS dependent antibiotic called althiomycin. In this work we utilize bioinformatic analyses to classify PswP as belonging to the F/KES subfamily of Sfp type PPTases and to putatively identify additional NRPS substrates of PswP, in addition to the althiomycin NRPS-PKS, in Ser. marcescens Db10. We show that PswP is required for the production of three diffusible metabolites by this organism, each possessing antimicrobial activity against Staphylococcus aureus. Genetic analyses identify the three metabolites as althiomycin, serrawettin W2 and an as-yet-uncharacterized siderophore, which may be related to enterobactin. Our results highlight the use of an individual PPTase enzyme in multiple biosynthetic pathways, each contributing to the ability of Ser. marcescens to inhibit competitor bacteria by the production of antimicrobial secondary metabolites
    corecore