17 research outputs found

    Structure of SPH (Self-Incompatibility Protein Homologue) Proteins: a Widespread Family of Small, Highly Stable, Secreted Proteins

    Get PDF
    SPH proteins are a large family of small, disulphide-bonded, secreted proteins, initially found in the self-incompatibility response in the field poppy , but now known to be widely distributed in plants, many containing multiple members of this protein family. Using the Origami strain of , we expressed one member of this family, SPH15 from , as a folded thioredoxin-fusion protein and purified it from the cytosol. The fusion protein was cleaved and characterised by analytical ultracentrifugation, circular dichroism, and NMR spectroscopy. This showed that SPH15 is monomeric and temperature stable, with a beta-sandwich structure. The four strands in each sheet have the same topology as the unrelated proteins; human transthyretin, bacterial TSSJ, and pneumolysin, with no discernable sequence similarity. The NMR-derived structure was compared with a model, made using a new deep learning algorithm based on co-evolution/correlated mutations, DeepCDPred, validating the method. The DeepCDPred method and homology modelling to SPH15 were then both used to derive models of the 3D structure of the three known PrsS proteins from , which have only 15-18% sequence homology to SPH15. The DeepCDPred method gave models with lower Discreet Optimised Protein Energy (DOPE) scores than the homology models. Three loops at one end of the poppy structures are postulated to interact with their respective pollen receptors to instigate programmed cell death in pollen tubes. [Abstract copyright: ©2019 The Author(s).

    Evaluating the significance of event and post-event sediment dynamics in a first order tributary using multiple sediment budgets.

    No full text
    Investigations of sediment transfer in upland catchments are rarely conducted over a sustained period of time, consequently a full understanding of the changing nature of sediment supply, storage and yield is often lacking. Three recent sediment budget studies from the Wet Swine Gill headwater catchment in the Lake District, Northern England, UK (a 0.65 km2, first-order tributary), provide evidence of changes in sediment transfer dynamics over the period 2002–2008. The first sediment budget in 2002 describes the impact of a hillslope debris slide and channelised debris flow event, where the former was the dominant budget component. The termination of the debris flow in the Wet Swine Gill channel meant that the vast majority of slide failure material was not transferred to the downstream fluvial system. However, subsequent modification of exposed hillslope sediment by post-event erosion processes and gully development resulted in ongoing erosion. A second sediment budget (June 2003–January 2004) demonstrated sediment yield downstream of the in-channel debris slide deposits far exceeds upstream fluvial sediment delivery by two orders of magnitude (c. 4,000 kg and c. 20 kg, respectively). Erosion of sediment from the exposed hillslope failure scar (c. 1300 kg) was less than channel erosion (c. 3300 kg), and sediment transfers from both the hillslope and channel sediment sources are sensitive to high-magnitude, low-frequency trigger events including summer thunderstorms, and winter rainfall/ snow-melt events. However, linear regression analysis only demonstrates weak or insignificant relations between meteorological conditions and sediment yield. A final sediment budget in April 2008 shows the significance of both hillslope (inclusive of gullying) and channel erosion/ transfer processes over the six-year monitoring period. In this budget, like the first sediment budget, the hillslope system is marginally more dominant, and therefore demonstrates a further switch in the relative significance of hillslope and channel system components. When interpreting such findings the potential uncertainty in the budget components, particularly in the unmeasured residual components, should be considered, as the magnitude of the error can be large. These results suggest that contemporary event and post-event sediment flux in small headwater catchments are more complex than short-term investigations would initially suggest. Furthermore there is a clear need for continued, longer-term monitoring of sediment system dynamics and associated hydro-meteorological conditions, in order to develop understanding of how future climate change may impact upland sediment systems
    corecore