49 research outputs found

    Thermostability of the coating, antigen and immunostimulator in an adjuvanted oral capsule vaccine formulation

    Get PDF
    Oral vaccines present an attractive alternative to injectable vaccines for enteric diseases due to ease of delivery and the induction of intestinal immunity at the site of infection. However, susceptibility to gastrointestinal proteolysis, limited transepithelial uptake and a lack of clinically acceptable adjuvants present significant challenges. A further challenge to mass vaccination in developing countries is the very expensive requirement to maintain the cold chain. We recently described the effectiveness of a Single Multiple Pill® (SmPill®) adjuvanted capsule approach to enhance the effectiveness of a candidate enterotoxigenic Escherichia coli (ETEC) oral vaccine. Here it was demonstrated that this delivery system maintains the antigenicity of ETEC colonisation factor antigen I (CFA/I) and the immunostimulatory activity of the orally active α-Galactosylceramide (α-GalCer) adjuvant after storage of SmPill® minispheres under room temperature and extreme storage conditions for several months. In addition, the internal structure of the cores of SmPill® minispheres and antigen release features at intestinal pH were found to be preserved under all these conditions. However, changes in the surface morphology of SmPill® minispheres leading to the antigen release at gastric pH were observed after a few weeks of storage under extreme conditions. Those modifications were prevented by the introduction of an Opadry® White film coating layer between the core of SmPill® minispheres and the enteric coating. Under these conditions, protection against antigen release at gastric pH was maintained even under high temperature and humidity conditions. These results support the potential of the SmPill® minisphere approach to maintain the stability of an adjuvanted whole cell killed oral vaccine formulation

    Cardiovascular Disease Risk Factors and Physical Fitness in Volunteer Firefighters

    Get PDF
    International Journal of Exercise Science 12(2): 764-776, 2019. Forty-seven percent of volunteer firefighter line of duty deaths are caused by cardiovascular events. Aggressive cardiovascular disease (CVD) risk factor reduction and improved physical fitness could reduce CVD mortality within this population. We assessed CVD risk factors and physical fitness in a large cohort of volunteer firefighters to help establish a health and fitness profile of this population, which may serve as evidence for the need to initiate programs aimed at reducing morbidity and mortality caused by CVD in the volunteer fire service. Seventy-four male volunteer firefighters were assessed for eight CVD risk factors and anthropometric characteristics. Physical fitness was assessed via push-ups, sit-ups, and the YMCA step test. Sixty-eight percent of the firefighters had two or more CVD risk factors. The sample was considered obese via body fat percentage (25.3 ± 5.7%), 27% were hypertensive, 30% had hypercholesterolemia, and 46% were sedentary. The average number of sit-ups performed was 27.3 ± 10.5, which was ranked in the 25thpercentile. The average heart rate after the YMCA step test was 160.2 ± 14.6 bpm, which was ranked very poor. The number of CVD risk factors and poor physical fitness in this cohort of volunteer firefighters was noteworthy. Most volunteer firefighters in our sample were at elevated risk for CVD and had inadequate physical fitness. This evidence conveys the need to initiate physical activity and nutrition outreach programs, led by health and fitness professionals, aimed at reducing firefighter morbidity and mortality within the volunteer fire service

    A Neutron Star Binary Merger Model for GW170817/GRB170817a/SSS17a

    Full text link
    The merging neutron star gravitational wave event GW170817 has been observed throughout the entire electromagnetic spectrum from radio waves to γ\gamma-rays. The resulting energetics, variability, and light curves are shown to be consistent with GW170817 originating from the merger of two neutron stars, in all likelihood followed by the prompt gravitational collapse of the massive remnant. The available γ\gamma-ray, X-ray and radio data provide a clear probe for the nature of the relativistic ejecta and the non-thermal processes occurring within, while the ultraviolet, optical and infrared emission are shown to probe material torn during the merger and subsequently heated by the decay of freshly synthesized rr-process material. The simplest hypothesis that the non-thermal emission is due to a low-luminosity short γ\gamma-ray burst (sGRB) seems to agree with the present data. While low luminosity sGRBs might be common, we show here that the collective prompt and multi-wavelength observations are also consistent with a typical, powerful sGRB seen off-axis. Detailed follow-up observations are thus essential before we can place stringent constraints on the nature of the relativistic ejecta in GW170817.Comment: 9 pages, 5 figures, accepted to ApJ Letter

    Electromagnetic Evidence that SSS17a is the Result of a Binary Neutron Star Merger

    Full text link
    11 hours after the detection of gravitational wave source GW170817 by the Laser Interferometer Gravitational-Wave Observatory and Virgo Interferometers, an associated optical transient SSS17a was discovered in the galaxy NGC 4993. While the gravitational wave data indicate GW170817 is consistent with the merger of two compact objects, the electromagnetic observations provide independent constraints of the nature of that system. Here we synthesize all optical and near-infrared photometry and spectroscopy of SSS17a collected by the One-Meter Two-Hemisphere collaboration. We find that SSS17a is unlike other known transients. The source is best described by theoretical models of a kilonova consisting of radioactive elements produced by rapid neutron capture (the r-process). We find that SSS17a was the result of a binary neutron star merger, reinforcing the gravitational wave result.Comment: 21 pages, 4 figures, accepted to Scienc

    GALC Deletions Increase the Risk of Primary Open-Angle Glaucoma: The Role of Mendelian Variants in Complex Disease

    Get PDF
    DNA copy number variants (CNVs) have been reported in many human diseases including autism and schizophrenia. Primary Open Angle Glaucoma (POAG) is a complex adult-onset disorder characterized by progressive optic neuropathy and vision loss. Previous studies have identified rare CNVs in POAG; however, their low frequencies prevented formal association testing. We present here the association between POAG risk and a heterozygous deletion in the galactosylceramidase gene (GALC). This CNV was initially identified in a dataset containing 71 Caucasian POAG cases and 478 ethnically matched controls obtained from dbGAP (study accession phs000126.v1.p1.) (p = 0.017, fisher's exact test). It was validated with array comparative genomic hybridization (arrayCGH) and realtime PCR, and replicated in an independent POAG dataset containing 959 cases and 1852 controls (p = 0.021, OR (odds ratio) = 3.5, 95% CI −1.1–12.0). Evidence for association was strengthened when the discovery and replication datasets were combined (p = 0.002; OR = 5.0, 95% CI 1.6–16.4). Several deletions with different endpoints were identified by array CGH of POAG patients. Homozygous deletions that eliminate GALC enzymatic activity cause Krabbe disease, a recessive Mendelian disorder of childhood displaying bilateral optic neuropathy and vision loss. Our findings suggest that heterozygous deletions that reduce GALC activity are a novel mechanism increasing risk of POAG. This is the first report of a statistically-significant association of a CNV with POAG risk, contributing to a growing body of evidence that CNVs play an important role in complex, inherited disorders. Our findings suggest an attractive biomarker and potential therapeutic target for patients with this form of POAG

    Strong Carbon Features and a Red Early Color in the Underluminous Type Ia SN 2022xkq

    Full text link
    We present optical, infrared, ultraviolet, and radio observations of SN 2022xkq, an underluminous fast-declining type Ia supernova (SN Ia) in NGC 1784 (D31\mathrm{D}\approx31 Mpc), from <1<1 to 180 days after explosion. The high-cadence observations of SN 2022xkq, a photometrically transitional and spectroscopically 91bg-like SN Ia, cover the first days and weeks following explosion which are critical to distinguishing between explosion scenarios. The early light curve of SN 2022xkq has a red early color and exhibits a flux excess which is more prominent in redder bands; this is the first time such a feature has been seen in a transitional/91bg-like SN Ia. We also present 92 optical and 19 near-infrared (NIR) spectra, beginning 0.4 days after explosion in the optical and 2.6 days after explosion in the NIR. SN 2022xkq exhibits a long-lived C I 1.0693 μ\mum feature which persists until 5 days post-maximum. We also detect C II λ\lambda6580 in the pre-maximum optical spectra. These lines are evidence for unburnt carbon that is difficult to reconcile with the double detonation of a sub-Chandrasekhar mass white dwarf. No existing explosion model can fully explain the photometric and spectroscopic dataset of SN 2022xkq, but the considerable breadth of the observations is ideal for furthering our understanding of the processes which produce faint SNe Ia.Comment: 38 pages, 16 figures, accepted for publication in ApJ, the figure 15 input models and synthetic spectra are now available at https://zenodo.org/record/837925

    The Gravity Collective: A Search for the Electromagnetic Counterpart to the Neutron Star-Black Hole Merger GW190814

    Full text link
    We present optical follow-up imaging obtained with the Katzman Automatic Imaging Telescope, Las Cumbres Observatory Global Telescope Network, Nickel Telescope, Swope Telescope, and Thacher Telescope of the LIGO/Virgo gravitational wave (GW) signal from the neutron star-black hole (NSBH) merger GW190814. We searched the GW190814 localization region (19 deg2^{2} for the 90th percentile best localization), covering a total of 51 deg2^{2} and 94.6% of the two-dimensional localization region. Analyzing the properties of 189 transients that we consider as candidate counterparts to the NSBH merger, including their localizations, discovery times from merger, optical spectra, likely host-galaxy redshifts, and photometric evolution, we conclude that none of these objects are likely to be associated with GW190814. Based on this finding, we consider the likely optical properties of an electromagnetic counterpart to GW190814, including possible kilonovae and short gamma-ray burst afterglows. Using the joint limits from our follow-up imaging, we conclude that a counterpart with an rr-band decline rate of 0.68 mag day1^{-1}, similar to the kilonova AT 2017gfo, could peak at an absolute magnitude of at most 17.8-17.8 mag (50% confidence). Our data are not constraining for ''red'' kilonovae and rule out ''blue'' kilonovae with M>0.5MM>0.5 M_{\odot} (30% confidence). We strongly rule out all known types of short gamma-ray burst afterglows with viewing angles <<17^{\circ} assuming an initial jet opening angle of \sim5.25.2^{\circ} and explosion energies and circumburst densities similar to afterglows explored in the literature. Finally, we explore the possibility that GW190814 merged in the disk of an active galactic nucleus, of which we find four in the localization region, but we do not find any candidate counterparts among these sources.Comment: 86 pages, 9 figure

    The 2021 WHO catalogue of Mycobacterium tuberculosis complex mutations associated with drug resistance: a genotypic analysis.

    Get PDF
    Background: Molecular diagnostics are considered the most promising route to achievement of rapid, universal drug susceptibility testing for Mycobacterium tuberculosis complex (MTBC). We aimed to generate a WHO-endorsed catalogue of mutations to serve as a global standard for interpreting molecular information for drug resistance prediction. Methods: In this systematic analysis, we used a candidate gene approach to identify mutations associated with resistance or consistent with susceptibility for 13 WHO-endorsed antituberculosis drugs. We collected existing worldwide MTBC whole-genome sequencing data and phenotypic data from academic groups and consortia, reference laboratories, public health organisations, and published literature. We categorised phenotypes as follows: methods and critical concentrations currently endorsed by WHO (category 1); critical concentrations previously endorsed by WHO for those methods (category 2); methods or critical concentrations not currently endorsed by WHO (category 3). For each mutation, we used a contingency table of binary phenotypes and presence or absence of the mutation to compute positive predictive value, and we used Fisher's exact tests to generate odds ratios and Benjamini-Hochberg corrected p values. Mutations were graded as associated with resistance if present in at least five isolates, if the odds ratio was more than 1 with a statistically significant corrected p value, and if the lower bound of the 95% CI on the positive predictive value for phenotypic resistance was greater than 25%. A series of expert rules were applied for final confidence grading of each mutation. Findings: We analysed 41 137 MTBC isolates with phenotypic and whole-genome sequencing data from 45 countries. 38 215 MTBC isolates passed quality control steps and were included in the final analysis. 15 667 associations were computed for 13 211 unique mutations linked to one or more drugs. 1149 (7·3%) of 15 667 mutations were classified as associated with phenotypic resistance and 107 (0·7%) were deemed consistent with susceptibility. For rifampicin, isoniazid, ethambutol, fluoroquinolones, and streptomycin, the mutations' pooled sensitivity was more than 80%. Specificity was over 95% for all drugs except ethionamide (91·4%), moxifloxacin (91·6%) and ethambutol (93·3%). Only two resistance mutations were identified for bedaquiline, delamanid, clofazimine, and linezolid as prevalence of phenotypic resistance was low for these drugs. Interpretation: We present the first WHO-endorsed catalogue of molecular targets for MTBC drug susceptibility testing, which is intended to provide a global standard for resistance interpretation. The existence of this catalogue should encourage the implementation of molecular diagnostics by national tuberculosis programmes. Funding: Unitaid, Wellcome Trust, UK Medical Research Council, and Bill and Melinda Gates Foundation

    Schizophrenia-associated somatic copy-number variants from 12,834 cases reveal recurrent NRXN1 and ABCB11 disruptions

    Get PDF
    While germline copy-number variants (CNVs) contribute to schizophrenia (SCZ) risk, the contribution of somatic CNVs (sCNVs)—present in some but not all cells—remains unknown. We identified sCNVs using blood-derived genotype arrays from 12,834 SCZ cases and 11,648 controls, filtering sCNVs at loci recurrently mutated in clonal blood disorders. Likely early-developmental sCNVs were more common in cases (0.91%) than controls (0.51%, p = 2.68e−4), with recurrent somatic deletions of exons 1–5 of the NRXN1 gene in five SCZ cases. Hi-C maps revealed ectopic, allele-specific loops forming between a potential cryptic promoter and non-coding cis-regulatory elements upon 5′ deletions in NRXN1. We also observed recurrent intragenic deletions of ABCB11, encoding a transporter implicated in anti-psychotic response, in five treatment-resistant SCZ cases and showed that ABCB11 is specifically enriched in neurons forming mesocortical and mesolimbic dopaminergic projections. Our results indicate potential roles of sCNVs in SCZ risk
    corecore