1,675 research outputs found

    The effects of label design characteristics on perceptions of genetically modified food

    Get PDF
    Objective. To explore the effects on perceptions of labelling food for genetically modified content. Background: there is increasing public pressure for the compulsory labelling of genetically modified food content on all food products, and yet little is known about how the design and content of such food labels will influence product perceptions. The current research draws upon warning label research - a field in which the effect of label design manipulations on perceptions of, and responses to, potential or perceived risks is well documented. Method. Two experiments are reported that investigate how label design features influence the perception of genetically modified foods. The effects of label colour (red, blue and green), wording style (definitive vs. probabilistic and explicit vs. non-explicit) and information source (government agency, consumer group and manufacturer) on hazard perceptions and purchase intentions were measured. Results. Hazard perceptions and purchase intentions were both influenced by label design characteristics in predictable ways. Any reference to genetic modification, even if the label is stating that the product is free of genetically modified ingredients, increased hazard perception, and decreased purchase intentions, relative to a no-label condition. Conclusion. Label design effects generalise from warning label research to influence the perception of genetically modified foods in predictable ways. Application. The design of genetically modified food labels. © 2012 Copyright Taylor and Francis Group, LLC

    Polarization forces in water deduced from single molecule data

    Full text link
    Intermolecular polarization interactions in water are determined using a minimal atomic multipole model constructed with distributed polarizabilities. Hydrogen bonding and other properties of water-water interactions are reproduced to fine detail by only three multipoles μH\mu_H, μO\mu_O, and θO\theta_O and two polarizabilities αO\alpha_O and αH\alpha_H, which characterize a single water molecule and are deduced from single molecule data.Comment: 4 revtex pages, 3 embedded color PS figure

    Estimating the functional form for the density dependence from life history data

    Get PDF
    Two contrasting approaches to the analysis of population dynamics are currently popular: demographic approaches where the associations between demographic rates and statistics summarizing the population dynamics are identified; and time series approaches where the associations between population dynamics, population density, and environmental covariates are investigated. In this paper, we develop an approach to combine these methods and apply it to detailed data from Soay sheep (Ovis aries). We examine how density dependence and climate contribute to fluctuations in population size via age- and sex-specific demographic rates, and how fluctuations in demographic structure influence population dynamics. Density dependence contributes most, followed by climatic variation, age structure fluctuations and interactions between density and climate. We then simplify the density-dependent, stochastic, age-structured demographic model and derive a new phenomenological time series which captures the dynamics better than previously selected functions. The simple method we develop has potential to provide substantial insight into the relative contributions of population and individual-level processes to the dynamics of populations in stochastic environments

    Power Spectra in Global Defect Theories of Cosmic Structure Formation

    Full text link
    An efficient technique for computing perturbation power spectra in field ordering theories of cosmic structure formation is introduced, enabling computations to be carried out with unprecedented precision. Large scale simulations are used to measure unequal time correlators of the source stress energy, taking advantage of scaling during matter and radiation domination, and causality, to make optimal use of the available dynamic range. The correlators are then re-expressed in terms of a sum of eigenvector products, a representation which we argue is optimal, enabling the computation of the final power spectra to be performed at high accuracy. Microwave anisotropy and matter perturbation power spectra for global strings, monopoles, textures and non-topological textures are presented and compared with recent observations.Comment: 4 pages, compressed and uuencoded RevTex file and postscript figure

    An integrated study of earth resources in the state of California using remote sensing techniques

    Get PDF
    The University of California has been conducting an investigation which seeks to determine the usefulness of modern remote sensing techniques for studying various components of California's earth resources complex. Most of the work has concentrated on California's water resources, but with some attention being given to other earth resources as well and to the interplay between them and California's water resources

    The Doppler Peaks from Cosmic Texture

    Get PDF
    We compute the angular power spectrum of temperature anisotropies on the microwave sky in the cosmic texture theory, with standard recombination assumed. The spectrum shows `Doppler' peaks analogous to those in scenarios based on primordial adiabatic fluctuations such as `standard CDM', but at quite different angular scales. There appear to be excellent prospects for using this as a discriminant between inflationary and cosmic defect theories.Comment: 14 pages, latex, 3 figures, compressed and uuencoded, replaced version has minor typographical correction

    Symmetry Breaking of Relativistic Multiconfiguration Methods in the Nonrelativistic Limit

    Full text link
    The multiconfiguration Dirac-Fock method allows to calculate the state of relativistic electrons in atoms or molecules. This method has been known for a long time to provide certain wrong predictions in the nonrelativistic limit. We study in full mathematical details the nonlinear model obtained in the nonrelativistic limit for Be-like atoms. We show that the method with sp+pd configurations in the J=1 sector leads to a symmetry breaking phenomenon in the sense that the ground state is never an eigenvector of L^2 or S^2. We thereby complement and clarify some previous studies.Comment: Final version, to appear in Nonlinearity. Nonlinearity (2010) in pres

    Making statistical methods in management research more useful: some suggestions from a case study

    Full text link
    I present a critique of the methods used in a typical paper. This leads to three broad conclusions about the conventional use of statistical methods. First, results are often reported in an unnecessarily obscure manner. Second, the null hypothesis testing paradigm is deeply flawed: estimating the size of effects and citing confidence intervals or levels is usually better. Third, there are several issues, independent of the particular statistical concepts employed, which limit the value of any statistical approach: e.g. difficulties of generalizing to different contexts, and the weakness of some research in terms of the size of the effects found. The first two of these are easily remedied: I illustrate some of the possibilities by re-analyzing the data from the case study article. The third means that in some contexts a statistical approach may not be worthwhile. My case study is a management paper, but similar problems arise in other social sciences. Keywords: Confidence, Hypothesis testing, Null hypothesis significance tests, Philosophy of statistics, Statistical methods, User-friendliness.Comment: 27 pages, 2 figures. New version has amended title, revised abstract, and the rest of the paper has been simplifie

    Cosmic Strings in an Open Universe with Baryonic and Non-Baryonic Dark Matter

    Full text link
    We study the effects of cosmic strings on structure formation in open universes. We calculate the power spectrum of density perturbations for two class of models: one in which all the dark matter is non baryonic (CDM) and one in which it is all baryonic (BDM). Our results are compared to the 1 in 6 IRAS QDOT power spectrum. The best candidates are then used to estimate μ\mu, the energy per unit length of the string network. Some comments are made on mechanisms by which structures are formed in the two theories.Comment: uu-encoded compressed tar of postscript files, Imperial/TP/94-95/0

    Quantum Mechanics of Multi-Prong Potentials

    Get PDF
    We describe the bound state and scattering properties of a quantum mechanical particle in a scalar NN-prong potential. Such a study is of special interest since these situations are intermediate between one and two dimensions. The energy levels for the special case of NN identical prongs exhibit an alternating pattern of non-degeneracy and (N1)(N-1) fold degeneracy. It is shown that the techniques of supersymmetric quantum mechanics can be used to generate new solutions. Solutions for prongs of arbitrary lengths are developed. Discussions of tunneling in NN-well potentials and of scattering for piecewise constant potentials are given. Since our treatment is for general values of NN, the results can be studied in the large NN limit. A somewhat surprising result is that a free particle incident on an NN-prong vertex undergoes continuously increased backscattering as the number of prongs is increased.Comment: 17 pages. LATEX. On request, TOP_DRAW files or hard copies available for 7 figure
    corecore