1,675 research outputs found
The effects of label design characteristics on perceptions of genetically modified food
Objective. To explore the effects on perceptions of labelling food for genetically modified content. Background: there is increasing public pressure for the compulsory labelling of genetically modified food content on all food products, and yet little is known about how the design and content of such food labels will influence product perceptions. The current research draws upon warning label research - a field in which the effect of label design manipulations on perceptions of, and responses to, potential or perceived risks is well documented. Method. Two experiments are reported that investigate how label design features influence the perception of genetically modified foods. The effects of label colour (red, blue and green), wording style (definitive vs. probabilistic and explicit vs. non-explicit) and information source (government agency, consumer group and manufacturer) on hazard perceptions and purchase intentions were measured. Results. Hazard perceptions and purchase intentions were both influenced by label design characteristics in predictable ways. Any reference to genetic modification, even if the label is stating that the product is free of genetically modified ingredients, increased hazard perception, and decreased purchase intentions, relative to a no-label condition. Conclusion. Label design effects generalise from warning label research to influence the perception of genetically modified foods in predictable ways. Application. The design of genetically modified food labels. © 2012 Copyright Taylor and Francis Group, LLC
Polarization forces in water deduced from single molecule data
Intermolecular polarization interactions in water are determined using a
minimal atomic multipole model constructed with distributed polarizabilities.
Hydrogen bonding and other properties of water-water interactions are
reproduced to fine detail by only three multipoles , , and
and two polarizabilities and , which
characterize a single water molecule and are deduced from single molecule data.Comment: 4 revtex pages, 3 embedded color PS figure
Estimating the functional form for the density dependence from life history data
Two contrasting approaches to the analysis of population dynamics are currently popular: demographic approaches where the associations between demographic rates and statistics summarizing the population dynamics are identified; and time series approaches where the associations between population dynamics, population density, and environmental covariates are investigated. In this paper, we develop an approach to combine these methods and apply it to detailed data from Soay sheep (Ovis aries). We examine how density dependence and climate contribute to fluctuations in population size via age- and sex-specific demographic rates, and how fluctuations in demographic structure influence population dynamics. Density dependence contributes most, followed by climatic variation, age structure fluctuations and interactions between density and climate. We then simplify the density-dependent, stochastic, age-structured demographic model and derive a new phenomenological time series which captures the dynamics better than previously selected functions. The simple method we develop has potential to provide substantial insight into the relative contributions of population and individual-level processes to the dynamics of populations in stochastic environments
Power Spectra in Global Defect Theories of Cosmic Structure Formation
An efficient technique for computing perturbation power spectra in field
ordering theories of cosmic structure formation is introduced, enabling
computations to be carried out with unprecedented precision. Large scale
simulations are used to measure unequal time correlators of the source stress
energy, taking advantage of scaling during matter and radiation domination, and
causality, to make optimal use of the available dynamic range. The correlators
are then re-expressed in terms of a sum of eigenvector products, a
representation which we argue is optimal, enabling the computation of the final
power spectra to be performed at high accuracy. Microwave anisotropy and matter
perturbation power spectra for global strings, monopoles, textures and
non-topological textures are presented and compared with recent observations.Comment: 4 pages, compressed and uuencoded RevTex file and postscript figure
An integrated study of earth resources in the state of California using remote sensing techniques
The University of California has been conducting an investigation which seeks to determine the usefulness of modern remote sensing techniques for studying various components of California's earth resources complex. Most of the work has concentrated on California's water resources, but with some attention being given to other earth resources as well and to the interplay between them and California's water resources
The Doppler Peaks from Cosmic Texture
We compute the angular power spectrum of temperature anisotropies on the
microwave sky in the cosmic texture theory, with standard recombination
assumed. The spectrum shows `Doppler' peaks analogous to those in scenarios
based on primordial adiabatic fluctuations such as `standard CDM', but at quite
different angular scales. There appear to be excellent prospects for using this
as a discriminant between inflationary and cosmic defect theories.Comment: 14 pages, latex, 3 figures, compressed and uuencoded, replaced
version has minor typographical correction
Symmetry Breaking of Relativistic Multiconfiguration Methods in the Nonrelativistic Limit
The multiconfiguration Dirac-Fock method allows to calculate the state of
relativistic electrons in atoms or molecules. This method has been known for a
long time to provide certain wrong predictions in the nonrelativistic limit. We
study in full mathematical details the nonlinear model obtained in the
nonrelativistic limit for Be-like atoms. We show that the method with sp+pd
configurations in the J=1 sector leads to a symmetry breaking phenomenon in the
sense that the ground state is never an eigenvector of L^2 or S^2. We thereby
complement and clarify some previous studies.Comment: Final version, to appear in Nonlinearity. Nonlinearity (2010) in
pres
Making statistical methods in management research more useful: some suggestions from a case study
I present a critique of the methods used in a typical paper. This leads to
three broad conclusions about the conventional use of statistical methods.
First, results are often reported in an unnecessarily obscure manner. Second,
the null hypothesis testing paradigm is deeply flawed: estimating the size of
effects and citing confidence intervals or levels is usually better. Third,
there are several issues, independent of the particular statistical concepts
employed, which limit the value of any statistical approach: e.g. difficulties
of generalizing to different contexts, and the weakness of some research in
terms of the size of the effects found. The first two of these are easily
remedied: I illustrate some of the possibilities by re-analyzing the data from
the case study article. The third means that in some contexts a statistical
approach may not be worthwhile. My case study is a management paper, but
similar problems arise in other social sciences. Keywords: Confidence,
Hypothesis testing, Null hypothesis significance tests, Philosophy of
statistics, Statistical methods, User-friendliness.Comment: 27 pages, 2 figures. New version has amended title, revised abstract,
and the rest of the paper has been simplifie
Cosmic Strings in an Open Universe with Baryonic and Non-Baryonic Dark Matter
We study the effects of cosmic strings on structure formation in open
universes. We calculate the power spectrum of density perturbations for two
class of models: one in which all the dark matter is non baryonic (CDM) and one
in which it is all baryonic (BDM). Our results are compared to the 1 in 6 IRAS
QDOT power spectrum. The best candidates are then used to estimate , the
energy per unit length of the string network. Some comments are made on
mechanisms by which structures are formed in the two theories.Comment: uu-encoded compressed tar of postscript files, Imperial/TP/94-95/0
Quantum Mechanics of Multi-Prong Potentials
We describe the bound state and scattering properties of a quantum mechanical
particle in a scalar -prong potential. Such a study is of special interest
since these situations are intermediate between one and two dimensions. The
energy levels for the special case of identical prongs exhibit an
alternating pattern of non-degeneracy and fold degeneracy. It is shown
that the techniques of supersymmetric quantum mechanics can be used to generate
new solutions. Solutions for prongs of arbitrary lengths are developed.
Discussions of tunneling in -well potentials and of scattering for piecewise
constant potentials are given. Since our treatment is for general values of
, the results can be studied in the large limit. A somewhat surprising
result is that a free particle incident on an -prong vertex undergoes
continuously increased backscattering as the number of prongs is increased.Comment: 17 pages. LATEX. On request, TOP_DRAW files or hard copies available
for 7 figure
- …