21 research outputs found

    Michael S. Harper Interviews Henri Coulette

    Get PDF

    Semi-implicit two-speed Well-Balanced relaxation scheme for Ripa model

    Get PDF
    In this paper, we propose a semi-implicit well-balanced scheme for the Ripa model based on a two-speed relaxation. The method both preserves equilibria and has an implicit step that reduces to the inversion of a constant Laplacian. Numerical simulations show that the scheme well capture low-Froude flows

    Simulation of a liquid-vapour compressible flow by a Lattice Boltzmann Method

    Get PDF
    International audienceThis work is devoted to the numerical resolution of a compressible three-phase flow with phase transition by a Lattice-Boltzmann Method (LBM). The flow presents complex features and large variations of physical quantities. The LBM is a robust numerical method that is entropy stable and that can be extended to second order accuracy without additional numerical cost. We present preliminary numerical results, which confirm its competitiveness compared to other Finite Volume methods

    DMTs and Covid-19 severity in MS: a pooled analysis from Italy and France

    Get PDF
    We evaluated the effect of DMTs on Covid-19 severity in patients with MS, with a pooled-analysis of two large cohorts from Italy and France. The association of baseline characteristics and DMTs with Covid-19 severity was assessed by multivariate ordinal-logistic models and pooled by a fixed-effect meta-analysis. 1066 patients with MS from Italy and 721 from France were included. In the multivariate model, anti-CD20 therapies were significantly associated (OR = 2.05, 95%CI = 1.39–3.02, p < 0.001) with Covid-19 severity, whereas interferon indicated a decreased risk (OR = 0.42, 95%CI = 0.18–0.99, p = 0.047). This pooled-analysis confirms an increased risk of severe Covid-19 in patients on anti-CD20 therapies and supports the protective role of interferon

    Search for dark matter candidates and large extra dimensions in events with a jet and missing transverse momentum with the ATLAS detector

    Get PDF
    Open Access, Copyright CERN, for the benefit of the ATLAS collaboration. This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

    Kinetic simulations of the Chodura and Debye sheaths for magnetic fields with grazing incidence

    No full text
    International audienceWhen an unmagnetized plasma comes in contact with a material surface, the difference in mobility between the electrons and the ions creates a nonneutral layer known as the Debye sheath (DS). However, in magnetic fusion devices, the open magnetic field lines intersect the structural elements of the device with near grazing incidence angles. The magnetic field tends to align the particle flow along its own field lines, thus counteracting the mechanism that leads to the formation of the DS. Recent work using a fluid model [P. Stangeby, Nucl. Fusion 52, 083012 (2012)] showed that the DS disappears when the incidence angle is smaller than a critical value (around 5 • for ITER-like parameters). Here, we study this transition by means of numerical simulations of a kinetic model both in the collisionless and weakly collisional regimes. We show that the main features observed in the fluid model are preserved: for grazing incidence, the space charge density near the wall is reduced, the ion flow is subsonic, and the electric field and plasma density profiles are spread out over several ion Larmor radii instead of a few Debye lengths as in the unmagnetized case. As there is no singularity at the DS entrance in the kinetic model, this phenomenon depends smoothly on the magnetic field incidence angle and no particular critical angle arises. The simulation results and the predictions of the fluid model are in good agreement, although some discrepancies subsist, mainly due to the assumptions of isothermal closure and diagonality of the pressure tensor in the fluid model

    Simulation of a liquid-vapour compressible flow by a Lattice Boltzmann Method

    Get PDF
    This work is devoted to the numerical resolution of a compressible three-phase flow with phase transition by a Lattice-Boltzmann Method (LBM). The flow 5 presents complex features and large variations of physical quantities. The LBM is a robust numerical method that is entropy stable and that can be extended to second order accuracy without additional numerical cost. We present preliminary numerical results, which confirm its competitiveness compared to other Finite Volume methods. 1

    An axially propagating two-stream instability in the Hall thruster plasma

    No full text
    Équipe 107 : Physique des plasmas chaudsInternational audienceCollective Thomson scattering experiments reveal the presence of high-frequency, axial electron density fluctuations at millimetric wavelengths in the Hall thruster plasma. The properties of these fluctuations are investigated experimentally and via linear kinetic theory. The relative drift of electrons and ions in the axial direction is found to be insufficient to cause excitation of the observed mode. Instead, the mode is determined to be a two-stream instability arising due to the velocity difference between singly and doubly charged ion populations in the plume
    corecore