110 research outputs found

    Thrombin Receptors on Human Platelets INITIAL LOCALIZATION AND SUBSEQUENT REDISTRIBUTION DURING PLATELET ACTIVATION

    Get PDF
    Platelet responses to thrombin are at least partly mediated by a G-protein-coupled receptor whose NH2 terminus is a substrate for thrombin. In the present studies we have examined the location of thrombin receptors in resting platelets and followed their redistribution during platelet activation. The results reveal several new aspects of thrombin receptor biology. 1) On resting platelets, approximately two-thirds of the receptors were located in the plasma membrane. The remainder were present in the membranes of the surface connecting system. 2) When platelets were activated by ADP or a thromboxane analog, thrombin receptors that were initially in the surface connecting system were exposed on the platelet surface, increasing the number of detectable receptors by 40% and presumably making them available for subsequent activation by thrombin. 3) Platelet activation by thrombin rapidly abolished the binding of the antibodies whose epitopes are sensitive to receptor cleavage and left the platelets in a state refractory to both thrombin and the agonist peptide, SFLLRN. This was accompanied by a 60% decrease in the binding of receptor antibodies directed COOH-terminal to the cleavage site irrespective of whether the receptors were activated proteolytically by thrombin or nonproteolytically by SFLLRN. 4) The loss of antibody binding sites caused by thrombin was due in part to receptor internalization and in part to the shedding of thrombin receptors into membrane microparticles, especially under conditions in which aggregation was allowed to occur. However, at least 40% of the cleaved receptors remained on the platelet surface. 5) Lacking the ability to synthesize new receptors and lacking an intracellular reserve of preformed receptors comparable to that found in endothelial cells, platelets were unable to repopulate their surface with intact receptors following exposure to thrombin. This difference underlies the ability of endothelial cells to recover responsiveness to thrombin rapidly while platelets do not, despite the presence on both of the same receptor for thrombin

    Mechanisms and consequences of agonist-induced talin recruitment to platelet integrin αIIbβ3

    Get PDF
    Platelet aggregation requires agonist-induced αIIbβ3 activation, a process mediated by Rap1 and talin. To study mechanisms, we engineered αIIbβ3 Chinese hamster ovary (CHO) cells to conditionally express talin and protease-activated receptor (PAR) thrombin receptors. Human PAR1 or murine PAR4 stimulation activates αIIbβ3, which was measured with antibody PAC-1, indicating complete pathway reconstitution. Knockdown of Rap1–guanosine triphosphate–interacting adaptor molecule (RIAM), a Rap1 effector, blocks this response. In living cells, RIAM overexpression stimulates and RIAM knockdown blocks talin recruitment to αIIbβ3, which is monitored by bimolecular fluorescence complementation. Mutations in talin or β3 that disrupt their mutual interaction block both talin recruitment and αIIbβ3 activation. However, one talin mutant (L325R) is recruited to αIIbβ3 but cannot activate it. In platelets, RIAM localizes to filopodia and lamellipodia, and, in megakaryocytes, RIAM knockdown blocks PAR4-mediated αIIbβ3 activation. The RIAM-related protein lamellipodin promotes talin recruitment and αIIbβ3 activity in CHO cells but is not expressed in megakaryocytes or platelets. Thus, talin recruitment to αIIbβ3 by RIAM mediates agonist-induced αIIbβ3 activation, with implications for hemostasis and thrombosis

    Tmem16F forms a Ca2+-Activated Cation Channel Required for Lipid Scrambling in Platelets during Blood Coagulation

    Get PDF
    Collapse of membrane lipid asymmetry is a hallmark of blood coagulation. TMEM16F of the TMEM16 family that includes TMEM16A/B Ca(2+)-activated Cl(−) channels (CaCCs) is linked to Scott syndrome with deficient Ca(2+)-dependent lipid scrambling. We generated TMEM16F knockout mice that exhibit bleeding defects and protection in an arterial thrombosis model associated with platelet deficiency in Ca(2+)-dependent phosphatidylserine exposure and procoagulant activity and lack a Ca(2+)-activated cation current in the platelet precursor megakaryocytes. Heterologous expression of TMEM16F generates a small-conductance Ca(2+)-activated nonselective cation (SCAN) current with subpicosiemens single-channel conductance rather than a CaCC. TMEM16F-SCAN channels permeate both monovalent and divalent cations, including Ca(2+), and exhibit synergistic gating by Ca(2+) and voltage. We further pinpointed a residue in the putative pore region important for the cation versus anion selectivity of TMEM16F-SCAN and TMEM16A-CaCC channels. This study thus identifies a Ca(2+)-activated channel permeable to Ca(2+) and critical for Ca(2+)-dependent scramblase activity during blood coagulation

    PAR2 absence completely rescues inflammation and ichthyosis caused by altered CAP1/Prss8 expression in mouse skin

    Get PDF
    Altered serine protease activity is associated with skin disorders in humans and in mice. The serine protease channel-activating protease-1 (CAP1; also termed protease serine S1 family member 8 (Prss8)) is important for epidermal homeostasis and is thus indispensable for postnatal survival in mice, but its roles and effectors in skin pathology are poorly defined. In this paper, we report that transgenic expression in mouse skin of either CAP1/Prss8 (K14-CAP1/Prss8) or protease-activated receptor-2 (PAR2; Grhl3PAR2/+), one candidate downstream target, causes epidermal hyperplasia, ichthyosis and itching. K14-CAP1/Prss8 ectopic expression impairs epidermal barrier function and causes skin inflammation characterized by an increase in thymic stromal lymphopoietin levels and immune cell infiltrations. Strikingly, both gross and functional K14-CAP1/Prss8-induced phenotypes are completely negated when superimposed on a PAR2-null background, establishing PAR2 as a pivotal mediator of pathogenesis. Our data provide genetic evidence for PAR2 as a downstream effector of CAP1/Prss8 in a signalling cascade that may provide novel therapeutic targets for ichthyoses, pruritus and inflammatory skin diseases

    An internal promoter underlies the difference in disease severity between N- and C-terminal truncation mutations of Titin in zebrafish

    Get PDF
    Truncating mutations in the giant sarcomeric protein Titin result in dilated cardiomyopathy and skeletal myopathy. The most severely affected dilated cardiomyopathy patients harbor Titin truncations in the C-terminal two-thirds of the protein, suggesting that mutation position might influence disease mechanism. Using CRISPR/Cas9 technology, we generated six zebrafish lines with Titin truncations in the N-terminal and C-terminal regions. Although all exons were constitutive, C-terminal mutations caused severe myopathy whereas N-terminal mutations demonstrated mild phenotypes. Surprisingly, neither mutation type acted as a dominant negative. Instead, we found a conserved internal promoter at the precise position where divergence in disease severity occurs, with the resulting protein product partially rescuing N-terminal truncations. In addition to its clinical implications, our work may shed light on a long-standing mystery regarding the architecture of the sarcomere

    The imperative to invest in science has never been greater

    Get PDF
    In order to sustain and improve the health of Americans, to ensure our ability to overcome new health challenges, and to realize the economic benefits of a vigorous scientific economy, we encourage our government to implement three actions. First, establish predictable, managed growth in the US scientific enterprise by establishing a sustainable and predictable real annual increase in science funding. This will require additional investments in the proven NIH-university partnership to maintain our world-leading position in biomedical science. Second, preserve the current cadre of well-trained junior scientists, including physician-scientists, and maintain a pipeline of young scientists motivated to innovate and improve health. Third, analyze changing health needs and priorities for health science–related investments in order to address ongoing shifts in population demographics and diseases, opportunities for improved prevention or treatment, and the availability of new scientific tools and disciplines. It is in the nation’s best interests -- for good health, for a robust economy, and for scientific leadership -- to advocate for strong federal support of biomedical science in America’s great research universities. Translation of this science yields enormous benefits to our nation’s health and to the economy

    Lymphatic endothelial cell sphingosine kinase activity is required for lymphocyte egress and lymphatic patterning

    Get PDF
    Lymphocyte egress from lymph nodes (LNs) is dependent on sphingosine-1-phosphate (S1P), but the cellular source of this S1P is not defined. We generated mice that expressed Cre from the lymphatic vessel endothelial hyaluronan receptor 1 (Lyve-1) locus and that showed efficient recombination of loxP-flanked genes in lymphatic endothelium. We report that mice with Lyve-1 CRE-mediated ablation of sphingosine kinase (Sphk) 1 and lacking Sphk2 have a loss of S1P in lymph while maintaining normal plasma S1P. In Lyve-1 Cre+ Sphk-deficient mice, lymphocyte egress from LNs and Peyer's patches is blocked. Treatment with pertussis toxin to overcome Gαi-mediated retention signals restores lymphocyte egress. Furthermore, in the absence of lymphatic Sphks, the initial lymphatic vessels in nonlymphoid tissues show an irregular morphology and a less organized vascular endothelial cadherin distribution at cell–cell junctions. Our data provide evidence that lymphatic endothelial cells are an in vivo source of S1P required for lymphocyte egress from LNs and Peyer's patches, and suggest a role for S1P in lymphatic vessel maturation
    corecore