2,684 research outputs found

    International Factors Influencing Australian Governments\u27 Responses to the Indochinese Refugee Problem

    Get PDF
    On the effects of Australia\u27s Indochinese refugee policies following the Vietnam War

    Understanding divergent zoochorous dispersal

    Get PDF
    The mechanisms which underpin passive dispersal (zoochory) of organisms (or propagules) by other, usually more mobile animals (vector species), are frequently poorly understood. While certain dispersal networks have received considerable scientific interest, basic questions concerning the relative importance of vector species, propagule survival, and likely dispersal distances, often remain unanswered. Here, we propose and apply a series of novel metrics, the Dispersal Potential (DP), the Relative Dispersal Potential (RDP) and the Combined Dispersal Potential (CDP), to predict and classify likely dispersal and vector importance. In essence, DP = Np × Tv, whereby Np is the per capita propagule load (e.g. mean, minimum, or maximum abundance) or species richness of propagules carried per individual vector species, while Tv is the total number of possible vectors (e.g. individuals of a single species at a source site, local scale abundances, or entire continental populations). Further, the ratio based metric RDP allows for DP comparison between species, while the CDP accumulates the DP of a variety of vector species. An additional Relative CDP (RCDP) metric facilitates comparison between the CDP for multiple vectors to that of one or more additional vectors. The proposed metrics can also be used to assess intraspecific differences (e.g. ontogeny or reproductive status). Accordingly, we examine a variety of case studies and present calculations to ascertain the usefulness of our proposed metrics. Finally, we argue that adoption of these metrics and variants thereof, will enhance understanding of zoochory within and across dispersal networks

    When worlds collide: Invader-driven benthic habitat complexity alters predatory impacts of invasive and native predatory fishes

    Get PDF
    Interactions between multiple invasive alien species (IAS) might increase their ecological impacts, yet relatively few studies have attempted to quantify the effects of facilitative interactions on the success and impact of aquatic IAS. Further, the effect of abiotic factors, such as habitat structure, have lacked consideration in ecological impact prediction for many high-profile IAS, with most data acquired through simplified assessments that do not account for real environmental complexities. In the present study, we assessed a potential facilitative interaction between a predatory invasive fish, the Ponto-Caspian round goby (Neogobius melanostomus), and an invasive bivalve, the Asian clam (Corbicula fluminea). We compared N. melanostomus functional responses (feeding-rates under different prey densities) to a co-occurring endangered European native analogue fish, the bullhead (Cottus gobio), in the presence of increased levels of habitat complexity driven by the accumulation of dead C. fluminea biomass that persists within the environment (i.e. 0, 10, 20 empty bivalve shells). Habitat complexity significantly influenced predation, with consumption in the absence of shells being greater than where 10 or 20 shells were present. However, at the highest shell density, invasive N. melanostomus maximum feeding-rates and functional response ratios were substantially higher than those of native C. gobio. Further, the Relative Impact Potential metric, by combining per capita effects and population abundances, indicated that higher shell densities exacerbate the relative impact of the invader. It therefore appears that N. melanostomus can better tolerate higher IAS shell abundances when foraging at high prey densities, suggesting the occurrence of an important facilitative interaction. Our data are thus fully congruent with field data that link establishment success of N. melanostomus with the presence of C. fluminea. Overall, we show that invader-driven benthic habitat complexity can alter the feeding-rates and thus impacts of predatory fishes, and highlight the importance of inclusion of abiotic factors in impact prediction assessments for IAS

    Driver's Seat: Understanding Divergent Zoochorous Dispersal of Propagules

    Get PDF
    The functional role, relative importance, and the spatial and temporal parameters of different vector species, which underpin the passive dispersal (zoochory) of organisms (or their propagules), are frequently poorly understood. Accordingly, a conceptual framework capable of providing a rigorous and unified assessment for the dispersal capacity of vector species is required. Here, we propose and apply a series of novel metrics, the Dispersal Potential (DP), the Relative Dispersal Potential (RDP), and the Combined Dispersal Potential (CDP), to predict and classify likely dispersal and vector importance. In essence, DP = Np × Tv, whereby Np is the per capita propagule load (e.g., mean, minimum, or maximum abundance) or species richness of propagules carried per individual vector species, while Tv is the total number of possible vectors (e.g., individuals of a single species at a source site, local scale abundances, or entire continental populations). Further, the ratio based metric RDP allows for DP comparison between species, while the CDP accumulates the DP of a variety of vector species. An additional Relative CDP (RCDP) metric facilitates comparison between the CDP for multiple vectors to that of one or more additional vectors. The proposed metrics can also be used to assess intraspecific differences (e.g., ontogeny). Accordingly, we examine a variety of case studies and present calculations to ascertain the usefulness of our proposed metrics. Overall, the metrics can be used to quantify and rank the prominence of different dispersers that facilitate biological connectivity. Finally, we argue that adoption of these metrics and variants thereof, will provide a more realistic measure of species' functional roles than examination of interaction intensities alone, which will enhance understanding of zoochory within and across dispersal networks

    Constraints on the χ_(c1) versus χ_(c2) polarizations in proton-proton collisions at √s = 8 TeV

    Get PDF
    The polarizations of promptly produced χ_(c1) and χ_(c2) mesons are studied using data collected by the CMS experiment at the LHC, in proton-proton collisions at √s=8  TeV. The χ_c states are reconstructed via their radiative decays χ_c → J/ψγ, with the photons being measured through conversions to e⁺e⁻, which allows the two states to be well resolved. The polarizations are measured in the helicity frame, through the analysis of the χ_(c2) to χ_(c1) yield ratio as a function of the polar or azimuthal angle of the positive muon emitted in the J/ψ → μ⁺μ⁻ decay, in three bins of J/ψ transverse momentum. While no differences are seen between the two states in terms of azimuthal decay angle distributions, they are observed to have significantly different polar anisotropies. The measurement favors a scenario where at least one of the two states is strongly polarized along the helicity quantization axis, in agreement with nonrelativistic quantum chromodynamics predictions. This is the first measurement of significantly polarized quarkonia produced at high transverse momentum
    corecore