1,365 research outputs found

    Two-way interplays between capital buffers, credit and output: evidence from French banks

    Get PDF
    We assess the extent to which capital buffers (the capital banks hold in excess of the regulatory minimum) exacerbate rather than reduce the cyclical behavior of credit. We empirically study the relationships between output gap, capital buffers and loan growth with firm-level data for French banks over the period 1993—2009. Our findings reveal that bank capital buffers intensify the cyclical credit fluctuations arising from the output gap developments, all the more as better quality capital is considered. Moreover, by performing Granger causality tests at the bank level, we find evidence of a two-way causality between capital buffers and loan growth, pointing to mutually reinforcing mechanisms. Overall, those empirical results lend support to a countercyclical financial regulation that focuses on highest-quality capital and aims at smoothing loan growth.Bank Capital Regulation, Procyclicality, Capital Buffers, Business Cycle Fluctuations, Basel III.

    Defect-dependent colossal negative thermal expansion in UiO-66(Hf) metal-organic framework

    Get PDF
    Thermally-densified hafnium terephthalate UiO-66(Hf) is shown to exhibit the strongest isotropic negative thermal expansion (NTE) effect yet reported for a metal-organic framework (MOF). Incorporation of correlated vacancy defects within the framework affects both the extent of thermal densification and the magnitude of NTE observed in the densified product. We thus demonstrate that defect inclusion can be used to tune systematically the physical behaviour of a MOF.Comment: 8 pages, 4 figures, revise

    Book Reviews

    Get PDF

    Foraging areas of king penguins (Aptenodytes patagonicus) breeding at Possession Island in the Southern Indian Ocean

    Get PDF
    Between January and March 1994 and between January and June 1995 we used Global Location Sensors(GLS) to determine the feeding areas of King Penguins Aptenodytes patagonicus breeding at Possession Island, Crozet Archipalago. In both years, the preferred feeding area during summer was located about 300 km south of the island, being slightly more distant in 1995. Mean foraging trip duration was 5.7±1.1 days (n = 6) during summer 1994 and 8.9±3.7 days (n = 9) during summer 1995, respectively. During summer the travelling speed of the King Penguins studied was highest at the first and last days of the foraging trip (c. 8 km/h). During the middle days of foraging trips travelling speeds were much lower (< 5 km/h). In early winter, between late April and mid-June 1995, two King Penguins equipped with GLSs executed foraging trips with durations of 53 and 59 days, respectively. Both birds travelled beyond 60°S with maximum distances to the colony of 1600 and 1800 km, respectively, and total distances covered of about 5000 km. The winter trips were characterized by alternating periods of higher and lower distances covered, indicating a highly variable feeding success at different localities. The relationships between foraging trip duration (days) and maximum distance to the colony (km) and total distance covered (km) were calculated to be maximum distance = 210 + 27 d and total distance = 340 + 85 d

    Two-photon double ionization of neon using an intense attosecond pulse train

    Full text link
    We present the first demonstration of two-photon double ionization of neon using an intense extreme ultraviolet (XUV) attosecond pulse train (APT) in a photon energy regime where both direct and sequential mechanisms are allowed. For an APT generated through high-order harmonic generation (HHG) in argon we achieve a total pulse energy close to 1 ÎŒ\muJ, a central energy of 35 eV and a total bandwidth of ∌30\sim30 eV. The APT is focused by broadband optics in a neon gas target to an intensity of 3⋅10123\cdot10^{12} W⋅\cdotcm−2^{-2}. By tuning the photon energy across the threshold for the sequential process the double ionization signal can be turned on and off, indicating that the two-photon double ionization predominantly occurs through a sequential process. The demonstrated performance opens up possibilities for future XUV-XUV pump-probe experiments with attosecond temporal resolution in a photon energy range where it is possible to unravel the dynamics behind direct vs. sequential double ionization and the associated electron correlation effects

    Notions of Connectivity in Overlay Networks

    Get PDF
    International audience" How well connected is the network? " This is one of the most fundamental questions one would ask when facing the challenge of designing a communication network. Three major notions of connectivity have been considered in the literature, but in the context of traditional (single-layer) networks, they turn out to be equivalent. This paper introduces a model for studying the three notions of connectivity in multi-layer networks. Using this model, it is easy to demonstrate that in multi-layer networks the three notions may differ dramatically. Unfortunately, in contrast to the single-layer case, where the values of the three connectivity notions can be computed efficiently, it has been recently shown in the context of WDM networks (results that can be easily translated to our model) that the values of two of these notions of connectivity are hard to compute or even approximate in multi-layer networks. The current paper shed some positive light into the multi-layer connectivity topic: we show that the value of the third connectivity notion can be computed in polynomial time and develop an approximation for the construction of well connected overlay networks
    • 

    corecore