12 research outputs found

    On the motion of a heavy rigid body in an ideal fluid with circulation

    Full text link
    Chaplygin's equations describing the planar motion of a rigid body in an unbounded volume of an ideal fluid involved in a circular flow around the body are considered. Hamiltonian structures, new integrable cases, and partial solutions are revealed, and their stability is examined. The problems of non-integrability of the equations of motion because of a chaotic behavior of the system are discussed.Comment: 25 pages, 4 figure

    Elektrolyse von Geschmolzenem Natriumnitrat

    No full text
    n/

    Impaired phosphocreatine metabolism in white adipocytes promotes inflammation.

    No full text
    The mechanisms promoting disturbed white adipocyte function in obesity remain largely unclear. Herein, we integrate white adipose tissue (WAT) metabolomic and transcriptomic data from clinical cohorts and find that the WAT phosphocreatine/creatine ratio is increased and creatine kinase-B expression and activity is decreased in the obese state. In human in vitro and murine in vivo models, we demonstrate that decreased phosphocreatine metabolism in white adipocytes alters adenosine monophosphate-activated protein kinase activity via effects on adenosine triphosphate/adenosine diphosphate levels, independently of WAT beigeing. This disturbance promotes a pro-inflammatory profile characterized, in part, by increased chemokine (C-C motif) ligand 2 (CCL2) production. These data suggest that the phosphocreatine/creatine system links cellular energy shuttling with pro-inflammatory responses in human and murine white adipocytes. Our findings provide unexpected perspectives on the mechanisms driving WAT inflammation in obesity and may present avenues to target adipocyte dysfunction
    corecore