4 research outputs found

    The Central English Channel troughs: major source-to-sink remnants or giant tidal scours?

    No full text
    International audienceThe Central English Channel troughs correspond to elongated incisions up to 250 m-deep, at several locations at the bottom of this sea corridor. Depending on their location, they are usually interpreted as part of the submerged quaternary paleovalley network or as resulting from megaflood events. Shedding light on these features, their age, and the processes underlying their development is key for understanding their significance in terms of event geology. The interpretation of a dense grid of high-resolution marine seismic data acquired in the Bay of Seine area reveals that the extensive Quaternary paleovalley and trough network commonly as associated to the "Channel River" system is actually subdivided into at least two superimposed and unrelated incised networks. The overlying network corresponds to fluvial incisions developing during low sea-level conditions of Pleistocene time and connects to the present day fluvial network. The underlying network corresponds to the troughs and appears as a complex, deeper, relatively discontinuous and isolated network. This older network shows unexpected local incision depth up to c.350-400 m-deep and complex sedimentary infill involving several sedimentary processes and environments from fluvial to tidal and shallow-marine. We discuss these observations and their implications for understanding the origin, age and development of the troughs all over the English Channel, from the Dangeard Troughs in the Dover Strait to the Hurd Deep at the western end. We also raise questions about the significance of these large incised features in terms of source-to-sink system of northwestern Europe

    The Central English Channel troughs: major source-to-sink remnants or giant tidal scours?

    No full text
    The Central English Channel troughs correspond to elongated incisions up to 250 m-deep, at several locations at the bottom of this sea corridor. Depending on their location, they are usually interpreted as part of the submerged quaternary paleovalley network or as resulting from megaflood events. Shedding light on these features, their age, and the processes underlying their development is key for understanding their significance in terms of event geology. The interpretation of a dense grid of high-resolution marine seismic data acquired in the Bay of Seine area reveals that the extensive Quaternary paleovalley and trough network commonly as associated to the “Channel River” system is actually subdivided into at least two superimposed and unrelated incised networks. The overlying network corresponds to fluvial incisions developing during low sea-level conditions of Pleistocene time and connects to the present day fluvial network. The underlying network corresponds to the troughs and appears as a complex, deeper, relatively discontinuous and isolated network. This older network shows unexpected local incision depth up to c.350-400 m-deep and complex sedimentary infill involving several sedimentary processes and environments from fluvial to tidal and shallow-marine. We discuss these observations and their implications for understanding the origin, age and development of the troughs all over the English Channel, from the Dangeard Troughs in the Dover Strait to the Hurd Deep at the western end. We also raise questions about the significance of these large incised features in terms of source-to-sink system of northwestern Europe

    (U-Th)/He Geochronology Constraints on Lateritic Duricrust Formation on the Guiana Shield

    No full text
    International audienceThick regoliths developed under tropical climate, namely, laterites, resulting from long-term and pronounced geochemical and mineralogical rearrangement of the parent rock in response to environmental changes. Little information is available on the timing of laterite and bauxite formations, especially on the chronology of the main weathering episodes responsible for lateritic cover formation on the Guiana shield. For this purpose, we focused on both lateritic and bauxitic duricrusts developed over the Paleoproterozoic Greenstone Belt in the Brownsberg, Suriname. The duricrust samples have a relatively simple mineralogy (i.e., goethite, gibbsite, hematite, and kaolinite) but reveal, when observed at a microscopic scale, a complex history of formation with multiple episodes of dissolution/reprecipitation. The (U-Th)/He dating of 179 Fe-oxides subsamples shows that duricrusts sampled at the top of the Brownsberg plateau have ages ranging from <0.8 Ma to ∌19 Ma. In contrast, Fe-oxides extracted from detrital duricrust boulders collected downslope indicate formation ages up to 36 Ma. This age discrepancy may indicate that a main episode of physical erosion affected this region between ca. 30 and 20 Ma. Consistently, the bauxite sampled at the mountaintop indicates a younger phase of formation, with Fe-oxides recementing fragments of a preexisting bauxitic material older than ∌15 Ma. Geochronological data also reveal a long-lasting weathering history until the present day, with multiple generations of Fe-oxides in the bauxite and the duricrusts resulting from successive cycles of dissolution and reprecipitation of Fe-oxides associated with redox cycles. This long-lasting weathering history led to geochemical remobilization and apparent enrichment in some relatively immobile elements, such as REE, aluminum, and vanadium, especially in the duricrust sampled at the mountaintop. Our geochronological, mineralogical, and geochemical study of Fe- and Al-crusts from the Brownsberg mountain provide constraints on the evolution of environmental conditions prevailing since the early Oligocene in Suriname
    corecore