1,961 research outputs found

    Geometrically Frustrated Crystals: Elastic Theory and Dislocations

    Full text link
    Elastic theory of ring-(or cylinder-)shaped crystals is constructed and the generation of edge dislocations due to geometrical frustration caused by the bending is studied. The analogy to superconducting (or superfluid) vortex state is pointed out and the phase diagram of the ring-crystal, which depends on radius and thickness, is discussed.Comment: 4 pages, 3 figure

    Making the link between critical appraisal, thinking and analysis

    Get PDF
    Nursing has become an all-graduate profession; as such, student nurses must develop their skills of critical analysis. The need to develop critical analytical thinking has been identified as the single most important skill in undergraduate education and reaching the academic requirements of level six study. In degree-level healthcare programmes, students are frequently asked to complete a structured critical appraisal of research. This paper examines how critical appraisal activities can be an opportunity for students to develop transferable critical thinking skills. Critical appraisal teaches objectivity, reflection, logic and discipline, which encourage students to think critically in both theory and practice.N/

    Multifractal burst in the spatio-temporal dynamics of jerky flow

    Full text link
    The collective behavior of dislocations in jerky flow is studied in Al-Mg polycrystalline samples subjected to constant strain rate tests. Complementary dynamical, statistical and multifractal analyses are carried out on the stress-time series recorded during jerky flow to characterize the distinct spatio-temporal dynamical regimes. It is shown that the hopping type B and the propagating type A bands correspond to chaotic and self-organized critical states respectively. The crossover between these types of bands is identified by a large spread in the multifractal spectrum. These results are interpreted on the basis of competing scales and mechanisms.Comment: 4 pages, 6 figures To be published in Phys. Rev. Lett. (2001

    The Asymmetric Wind in M82

    Get PDF
    We have obtained detailed imaging Fabry-Perot observations of the nearby galaxy M82, in order to understand the physical association between the high-velocity outflow and the starburst nucleus. The observed velocities of the emitting gas in M82 reveal a bipolar outflow of material, originating from the bright starburst regions in the galaxy's inner disk, but misaligned with respect to the galaxy spin axis. The deprojected outflow velocity increases with radius from 525 to 655 km/s. Spectral lines show double components in the centers of the outflowing lobes, with the H-alpha line split by ~300 km/s over a region almost a kiloparsec in size. The filaments are not simple surfaces of revolution, nor is the emission distributed evenly over the surfaces. We model these lobes as a composite of cylindrical and conical structures, collimated in the inner ~500 pc but expanding at a larger opening angle of ~25 degrees beyond that radius. We compare our kinematic model with simulations of starburst-driven winds in which disk material surrounding the source is entrained by the wind. The data also reveal a remarkably low [NII]/H-alpha ratio in the region of the outflow, indicating that photoionization by the nuclear starburst may play a significant role in the excitation of the optical filament gas, particularly near the nucleus.Comment: 42 pages AASTeX with 16 figures; accepted for publication in ApJ; figures reformatted for better printin

    High order amplitude equation for steps on creep curve

    Full text link
    We consider a model proposed by one of the authors for a type of plastic instability found in creep experiments which reproduces a number of experimentally observed features. The model consists of three coupled non-linear differential equations describing the evolution of three types of dislocations. The transition to the instability has been shown to be via Hopf bifurcation leading to limit cycle solutions with respect to physically relevant drive parameters. Here we use reductive perturbative method to extract an amplitude equation of up to seventh order to obtain an approximate analytic expression for the order parameter. The analysis also enables us to obtain the bifurcation (phase) diagram of the instability. We find that while supercritical bifurcation dominates the major part of the instability region, subcritical bifurcation gradually takes over at one end of the region. These results are compared with the known experimental results. Approximate analytic expressions for the limit cycles for different types of bifurcations are shown to agree with their corresponding numerical solutions of the equations describing the model. The analysis also shows that high order nonlinearities are important in the problem. This approach further allows us to map the theoretical parameters to the experimentally observed macroscopic quantities.Comment: LaTex file and eps figures; Communicated to Phys. Rev.

    Colligative properties of solutions: I. Fixed concentrations

    Full text link
    Using the formalism of rigorous statistical mechanics, we study the phenomena of phase separation and freezing-point depression upon freezing of solutions. Specifically, we devise an Ising-based model of a solvent-solute system and show that, in the ensemble with a fixed amount of solute, a macroscopic phase separation occurs in an interval of values of the chemical potential of the solvent. The boundaries of the phase separation domain in the phase diagram are characterized and shown to asymptotically agree with the formulas used in heuristic analyses of freezing point depression. The limit of infinitesimal concentrations is described in a subsequent paper.Comment: 28 pages, 1 fig; see also math-ph/0407035 (both to appear in JSP
    corecore