1,974 research outputs found
Differential chemical abundance analysis of a 47 Tuc AGB star with respect to Arcturus
This study resolves a discrepancy in the abundance of Zr in the 47 Tucanae
asymptotic giant branch star Lee 2525. This star was observed using the echelle
spectrograph on the 2.3 m telescope at Siding Spring Observatory. The analysis
was undertaken by calibrating Lee 2525 with respect to the standard giant star
Arcturus. This work emphasises the importance of using a standard star with
stellar parameters comparable to the star under analysis rather than a
calibration with respect to the Sun (Koch & McWilliam 2008). Systematic errors
in the analysis process are then minimised due to the similarity in atmospheric
structure between the standard and programme stars. The abundances derived for
Lee 2525 were found to be in general agreement with the Brown & Wallerstein
(1992) values except for Zr. In this study Zr has a similar enhancement
([Zr/Fe] = +0.51 dex) to another light s-process element, Y ([Y/Fe] = +0.53
dex), which reflects current theory regarding the enrichment of s-process
elements by nuclear processes within AGB stars (Busso et al. 2001). This is
contrary to the results of Brown & Wallerstein (1992) where Zr was
under-abundant ([Zr/Fe] = +0.51 dex) and Y was over-abundant ([Y/Fe] = +0.50
dex) with respect to Fe.Comment: 11 pages, 5 figures Accepted for publication in MNRA
Variations in Fe\u3csup\u3e3+\u3c/sup\u3e/∑Fe of Mariana Arc Basalts and Mantle Wedge \u3cem\u3ef\u3c/em\u3eO\u3csub\u3e2\u3c/sub\u3e
Arc basalts are more oxidized than mid-ocean ridge basalts, but it is unclear whether this difference is due to differentiation processes in the Earth’s crust or to a fundamental difference in the oxygen fugacity of their mantle sources. Distinguishing between these two hypotheses is important for understanding redox-sensitive processes related to arc magmatism, and thus more broadly how Earth materials cycle globally. We present major, volatile, and trace element concentrations in combination with Fe3+/∑Fe ratios determined in olivine-hosted glass inclusions and submarine glasses from five Mariana arc volcanoes and two regions of the Mariana Trough. For single eruptions, Fe3+/∑Fe ratios vary along liquid lines of descent that are either slightly oxidizing (olivine + clinopyroxene + plagioclase fractionation, CO2 ± H2O degassing) or reducing (olivine + clinopyroxene + plagioclase ± magnetite fractionation, CO2 + H2O + S degassing). Mariana samples are consistent with a global relationship between calc-alkaline affinity and both magmatic H2O and magmatic oxygen fugacity, where wetter, higher oxygen fugacity magmas display greater affinity for calc-alkaline differentiation. We find, however, that low-pressure differentiation cannot explain the majority of variations observed in Fe3+/∑Fe ratios for Mariana arc basalts, requiring primary differences in magmatic oxygen fugacity. Calculated oxygen fugacities of primary mantle melts at the pressures and temperatures of melt segregation are significantly oxidized relative to mid-ocean ridge basalts (∼QFM, where QFM is quartz–fayalite–magnetite buffer), ranging from QFM + 1·0 to QFM + 1·6 for Mariana arc basalts, whereas back-arc related samples record primary oxygen fugacities that range from QFM + 0·1 to QFM + 0·5. This Mariana arc sample suite includes a diversity of subduction influences, from lesser influence of a homogeneous H2O-rich component in the back-arc, to sediment melt- and fluid-dominated influences along the arc. Primary melt oxygen fugacity does not correlate significantly with sediment melt contributions (e.g. Th/La), nor can it be attributed to previous melt extraction in the back-arc. Primary melt oxygen fugacity correlates strongly with indices of slab fluids (e.g. Ba/La) from the Mariana Trough through the Mariana arc, increasing by 1·5 orders of magnitude as Ba/La increases by a factor of 10 relative to mid-ocean ridge basalts. These results suggest that contributions from the slab to the mantle wedge may be responsible for the elevated oxygen fugacity recorded by Mariana arc basalts and that slab fluids are potentially very oxidized
The classification of frequencies in the {\gamma} Doradus / {\delta} Scuti hybrid star HD 49434
Hybrid stars of the {\gamma} Doradus and {\delta} Scuti pulsation types have
great potential for asteroseismic analysis to explore their interior structure.
To achieve this, mode identi- fications of pulsational frequencies observed in
the stars must be made, a task which is far from simple. In this work we begin
the analysis by scrutinizing the frequencies found in the CoRoT photometric
satellite measurements and ground-based high-resolution spectroscopy of the
hybrid star HD 49434. The results show almost no consistency between the
frequencies found using the two techniques and no characteristic period
spacings or couplings were identified in either dataset. The spectroscopic data
additionally show no evidence for any long term (5 year) variation in the
dominant frequency. The 31 spectroscopic frequencies identified have standard
deviation profiles suggesting multiple modes sharing (l, m) in the {\delta}
Scuti frequency region and several skewed modes sharing the same (l, m) in the
{\gamma} Doradus frequency region. In addition, there is a clear frequency in
the {\gamma} Doradus frequency region that appears to be unrelated to the
others. We conclude HD 49434 remains a {\delta} Scuti/ {\gamma} Doradus
candidate hybrid star but more sophisticated models dealing with rotation are
sought to obtain a clear picture of the pulsational behaviour of this star.Comment: Accepted for publication in MNRAS December 201
Non-Classical Response from Quench-Cooled Solid Helium Confined in Porous Gold
We have investigated the non-classical response of solid 4He confined in
porous gold set to torsional oscillation. When solid helium is grown rapidly,
nearly 7% of the solid helium appears to be decoupled from the oscillation
below about 200 mK. Dissipation appears at temperatures where the decoupling
shows maximum variation. In contrast, the decoupling is substantially reduced
in slowly grown solid helium. The dynamic response of solid helium was also
studied by imposing a sudden increase in the amplitude of oscillation. Extended
relaxation in the resonant period shift, suggesting the emergence of the
pinning of low energy excitations, was observed below the onset temperature of
the non-classical response. The motion of a dislocation or a glassy solid is
restricted in the entangled narrow pores and is not likely responsible for the
period shift and long relaxation
Long-term study of VOCs measured with PTR-MS at a rural site in New Hampshire with urban influences
A long-term, high time-resolution volatile organic compound (VOC) data set from a ground site that experiences urban, rural, and marine influences in the Northeastern United States is presented. A proton-transfer-reaction mass spectrometer (PTR-MS) was used to quantify 15 VOCs: a marine tracer dimethyl sulfide (DMS), a biomass burning tracer acetonitrile, biogenic compounds (monoterpenes, isoprene), oxygenated VOCs (OVOCs: methyl vinyl ketone (MVK) plus methacrolein (MACR), methanol, acetone, methyl ethyl ketone (MEK), acetaldehyde, and acetic acid), and aromatic compounds (benzene, toluene, C<sub>8</sub> and C<sub>9</sub> aromatics). Time series, overall and seasonal medians, with 10th and 90th percentiles, seasonal mean diurnal profiles, and inter-annual comparisons of mean summer and winter diurnal profiles are shown. Methanol and acetone exhibit the highest overall median mixing ratios 1.44 and 1.02 ppbv, respectively. Comparing the mean diurnal profiles of less well understood compounds (e.g., MEK) with better known compounds (e.g., isoprene, monoterpenes, and MVK + MACR) that undergo various controls on their atmospheric mixing ratios provides insight into possible sources of the lesser known compounds. The constant diurnal value of ~0.7 for the toluene:benzene ratio in winter, may possibly indicate the influence of wood-based heating systems in this region. Methanol exhibits an initial early morning release in summer unlike any other OVOC (or isoprene) and a dramatic late afternoon mixing ratio increase in spring. Although several of the OVOCs appear to have biogenic sources, differences in features observed between isoprene, methanol, acetone, acetaldehyde, and MEK suggest they are produced or emitted in unique ways
Variations in Fe^(3+)/∑Fe of Mariana Arc Basalts and Mantle Wedge ƒO_2
Arc basalts are more oxidized than mid-ocean ridge basalts, but it is unclear whether this difference is due to differentiation processes in the Earth’s crust or to a fundamental difference in the oxygen fugacity of their mantle sources. Distinguishing between these two hypotheses is important for understanding redox-sensitive processes related to arc magmatism, and thus more broadly how Earth materials cycle globally. We present major, volatile, and trace element concentrations in combination with Fe^(3+)/∑Fe ratios determined in olivine-hosted glass inclusions and submarine glasses from five Mariana arc volcanoes and two regions of the Mariana Trough. For single eruptions, Fe^(3+)/∑Fe ratios vary along liquid lines of descent that are either slightly oxidizing (olivine + clinopyroxene + plagioclase fractionation, CO_2 ± H_2O degassing) or reducing (olivine + clinopyroxene + plagioclase ± magnetite fractionation, CO_2 + H_2O + S degassing). Mariana samples are consistent with a global relationship between calc-alkaline affinity and both magmatic H_2O and magmatic oxygen fugacity, where wetter, higher oxygen fugacity magmas display greater affinity for calc-alkaline differentiation. We find, however, that low-pressure differentiation cannot explain the majority of variations observed in Fe^(3+)/∑Fe ratios for Mariana arc basalts, requiring primary differences in magmatic oxygen fugacity. Calculated oxygen fugacities of primary mantle melts at the pressures and temperatures of melt segregation are significantly oxidized relative to mid-ocean ridge basalts (∼QFM, where QFM is quartz–fayalite–magnetite buffer), ranging from QFM + 1·0 to QFM + 1·6 for Mariana arc basalts, whereas back-arc related samples record primary oxygen fugacities that range from QFM + 0·1 to QFM + 0·5. This Mariana arc sample suite includes a diversity of subduction influences, from lesser influence of a homogeneous H_2O-rich component in the back-arc, to sediment melt- and fluid-dominated influences along the arc. Primary melt oxygen fugacity does not correlate significantly with sediment melt contributions (e.g. Th/La), nor can it be attributed to previous melt extraction in the back-arc. Primary melt oxygen fugacity correlates strongly with indices of slab fluids (e.g. Ba/La) from the Mariana Trough through the Mariana arc, increasing by 1·5 orders of magnitude as Ba/La increases by a factor of 10 relative to mid-ocean ridge basalts. These results suggest that contributions from the slab to the mantle wedge may be responsible for the elevated oxygen fugacity recorded by Mariana arc basalts and that slab fluids are potentially very oxidized
Geometrically Frustrated Crystals: Elastic Theory and Dislocations
Elastic theory of ring-(or cylinder-)shaped crystals is constructed and the
generation of edge dislocations due to geometrical frustration caused by the
bending is studied. The analogy to superconducting (or superfluid) vortex state
is pointed out and the phase diagram of the ring-crystal, which depends on
radius and thickness, is discussed.Comment: 4 pages, 3 figure
“I just let him cry...”: Designing socio-technical interventions in families to prevent mental health disorders
Interventions that help children develop protective factors against mental health disorders are an inherently social endeavour, relying on a number of actors from within the family as well as the school context. Little work thus far in CSCW and HCI has examined the potential of technology to support or enhance such interventions. This paper provides the first steps to unpacking this socio-technical design space, focusing on emotional regulation (ER) as a specific instance of a protective factor. We combine a user-centred approach to understanding lived experiences of families (interviews, design workshops) with an expert-led understanding of what makes interventions psychologically effective. Our findings suggest the potential of technology to enable a shift in how prevention interventions are designed and delivered: empowering children and parents through a new model of ‘child-led, situated interventions’, where participants learn through actionable support directly within family life, as opposed to didactic in-person workshops and a subsequent ‘skills application’. This conceptual model was then instantiated in a technology probe, which was deployed with 14 families. The promising field study findings provide an initial proof-of-concept validation of the proposed approach
- …