1,201 research outputs found

    4-Dimensional BF Theory as a Topological Quantum Field Theory

    Full text link
    Starting from a Lie group G whose Lie algebra is equipped with an invariant nondegenerate symmetric bilinear form, we show that 4-dimensional BF theory with cosmological term gives rise to a TQFT satisfying a generalization of Atiyah's axioms to manifolds equipped with principal G-bundle. The case G = GL(4,R) is especially interesting because every 4-manifold is then naturally equipped with a principal G-bundle, namely its frame bundle. In this case, the partition function of a compact oriented 4-manifold is the exponential of its signature, and the resulting TQFT is isomorphic to that constructed by Crane and Yetter using a state sum model, or by Broda using a surgery presentation of 4-manifolds.Comment: 15 pages in LaTe

    Braneworld Flux Inflation

    Get PDF
    We propose a geometrical model of brane inflation where inflation is driven by the flux generated by opposing brane charges and terminated by the collision of the branes, with charge annihilation. We assume the collision process is completely inelastic and the kinetic energy is transformed into the thermal energy after collision. Thereafter the two branes coalesce together and behave as a single brane universe with zero effective cosmological constant. In the Einstein frame, the 4-dimensional effective theory changes abruptly at the collision point. Therefore, our inflationary model is necessarily 5-dimensional in nature. As the collision process has no singularity in 5-dimensional gravity, we can follow the evolution of fluctuations during the whole history of the universe. It turns out that the radion field fluctuations have a steeply tilted, red spectrum, while the primordial gravitational waves have a flat spectrum. Instead, primordial density perturbations could be generated by a curvaton mechanism.Comment: 11 pages, 6 figures, references adde

    Identification of a 5-Protein Biomarker Molecular Signature for Predicting Alzheimer's Disease

    Get PDF
    Background: Alzheimer’s disease (AD) is a progressive brain disease with a huge cost to human lives. The impact of the disease is also a growing concern for the governments of developing countries, in particular due to the increasingly high number of elderly citizens at risk. Alzheimer’s is the most common form of dementia, a common term for memory loss and other cognitive impairments. There is no current cure for AD, but there are drug and non-drug based approaches for its treatment. In general the drug-treatments are directed at slowing the progression of symptoms. They have proved to be effective in a large group of patients but success is directly correlated with identifying the disease carriers at its early stages. This justifies the need for timely and accurate forms of diagnosis via molecular means. We report here a 5-protein biomarker molecular signature that achieves, on average, a 96% total accuracy in predicting clinical AD. The signature is composed of the abundances of IL-1α, IL-3, EGF, TNF-α and G-CSF. Methodology/Principal Findings: Our results are based on a recent molecular dataset that has attracted worldwide attention. Our paper illustrates that improved results can be obtained with the abundance of only five proteins. Our methodology consisted of the application of an integrative data analysis method. This four step process included: a) abundance quantization, b) feature selection, c) literature analysis, d) selection of a classifier algorithm which is independent of the feature selection process. These steps were performed without using any sample of the test datasets. For the first two steps, we used the application of Fayyad and Irani’s discretization algorithm for selection and quantization, which in turn creates an instance of the (alpha-beta)-k-Feature Set problem; a numerical solution of this problem led to the selection of only 10 proteins. Conclusions/Significance: the previous study has provided an extremely useful dataset for the identification of A biomarkers. However, our subsequent analysis also revealed several important facts worth reporting: 1. A 5-protein signature (which is a subset of the 18-protein signature of Ray et al.) has the same overall performance (when using the same classifier). 2. Using more than 20 different classifiers available in the widely-used Weka software package, our 5- protein signature has, on average, a smaller prediction error indicating the independence of the classifier and the robustness of this set of biomarkers (i.e. 96% accuracy when predicting AD against non-demented control). 3. Using very simple classifiers, like Simple Logistic or Logistic Model Trees, we have achieved the following results on 92 samples: 100 percent success to predict Alzheimer’s Disease and 92 percent to predict Non Demented Control on the AD dataset

    Screening of endoglucanase-producing bacteria in the saline rhizosphere of Rhizophora mangle.

    Get PDF
    Abstract: In screening the culturable endoglucanase-producing bacteria in the rhizosphere of Rhizophora mangle, we found a prevalence of genera Bacillus and Paenibacillus. These bacteria revealed different activities in endoglucolysis and biofilm formation when exposed to specific NaCl concentrations, indicating modulated growth under natural variations in mangrove salinity

    Response of the bacterial communities associated with maize rhizosphere to poultry litter as an organomineral fertilizer.

    Get PDF
    Maize is an important food source worldwide and is of considerable industrial importance. Low maize yields are mostly due to low soil fertility, so expensive mineral fertilizers are often used to offset the lack of nutrients. Poultry litter (PL) is one of the most valuable and phosphorous-rich animal wastes. However, PL usually contains veterinary antibiotic residues, particularly fluoroquinolones (FQs), which may alter soil microorganism diversity and resistance patterns. In this study, we aimed to understand the impact of applying mineral (triple superphosphate?STP) or organomineral (STP with PL and reactive Bayovar phosphate with PL) fertilizers (130 or 260 kg/ha of total P2O5) on the structure and composition of the soil bacteriome and on phosphate-mineralizing bacteria associated with the maize rhizosphere. Maize plants were sampled at 60 and 90 days after sowing and a clear rhizosphere effect was observed in all samples. No specific groups of bacterial genera predominated (>3% relative abundance) according to the different fertilizer treatments and most of the genera were shared among samples. Multivariate analyses of 16S rRNA sequences revealed clear clustering based on sampling time and distinct separation from bulk soil samples. Abundances of phosphate-mineralizing bacteria varied depending on the sampling time.We observed a positive effect on phytase activity under the 260 kg STP with PL treatment. Although the FQ enrofloxacin and its main metabolite ciprofloxacin were detected in PL, their concentrations in fertilized soils were below quantification thresholds. Quinolone resistance genes were not detected in the maize rhizosphere or bulk soil. Together, these results suggest that the rhizosphere effect, plant age and applied amounts of fertilizer are more influential on bacterial communities than the type of fertilizer used. Thus, application of PL as an organomineral fertilizer does not appear to have extensive impacts on the bacterial diversity of maize rhizosphere, so it could be an excellent option for enhancing maize production

    Physically meaningful and not so meaningful symmetries in Chern-Simons theory

    Get PDF
    We explicitly show that the Landau gauge supersymmetry of Chern-Simons theory does not have any physical significance. In fact, the difference between an effective action both BRS invariant and Landau supersymmetric and an effective action only BRS invariant is a finite field redefinition. Having established this, we use a BRS invariant regulator that defines CS theory as the large mass limit of topologically massive Yang-Mills theory to discuss the shift k \to k+\cv of the bare Chern-Simons parameter kk in conncection with the Landau supersymmetry. Finally, to convince ourselves that the shift above is not an accident of our regularization method, we comment on the fact that all BRS invariant regulators used as yet yield the same value for the shift.Comment: phyzzx, 21 pages, 2 figures in one PS fil

    Test of the photon detection system for the LHCb RICH Upgrade in a charged particle beam

    Full text link
    The LHCb detector will be upgraded to make more efficient use of the available luminosity at the LHC in Run III and extend its potential for discovery. The Ring Imaging Cherenkov detectors are key components of the LHCb detector for particle identification. In this paper we describe the setup and the results of tests in a charged particle beam, carried out to assess prototypes of the upgraded opto-electronic chain from the Multi-Anode PMT photosensor to the readout and data acquisition system.Comment: 25 pages, 22 figure
    • 

    corecore