9,737 research outputs found
EuroSpine Task Force on Research: support for spine researchers
In recognition of the value of research to the practice of spine care, Federico Balagué and Ferran Pellisé, at the time President and Secretary for EuroSpine, asked Margareta Nordin to set up a Task Force on Research (TFR) for EuroSpine during summer 2011. The concept was to stimulate and facilitate a research community within the society, through two main functions: (1) distribution of EuroSpine funds to researchers; (2) develop and deliver research training/education courses. What has the EuroSpine TFR accomplished since its inception
Structure of the SMC - Stellar component distribution from 2MASS data
The spatial distribution of the SMC stellar component is investigated from
2MASS data. The morphology of the different age populations is presented. The
center of the distribution is calculated and compared with previous
estimations. The rotation of the stellar content and possible consequence of
dark matter presence are discussed. The different stellar populations are
identified through a CMD diagram of the 2MASS data. Isopleth contour maps are
produced in every case, to reveal the spatial distribution. The derived density
profiles are discussed. The older stellar population follows an exponential
profile at projected diameters of about 5 kpc (~5 deg) for the major axis and
~4 kpc for the minor axis, centred at RA: 0h:51min, Dec: -73deg 7' (J2000.0).
The centre coordinates are found the same for all the different age population
maps and are in good accordance with the kinematical centre of the SMC. However
they are found considerably different from the coordinates of the centre of the
gas distribution. The fact that the older population found on an exponential
disk, gives evidence that the stellar content is rotating, with a possible
consequence of dark matter presence. The strong interactions between the MCs
and the MilkyWay might explain the difference in the distributions of the
stellar and gas components. The lack in the observed velocity element, that
implies absence of rotation, and contradicts with the consequences of
exponential profile of the stellar component, may also be a result of the
gravitational interactions.Comment: 7 Pages, 6 figures, accepted for publication in A&
Quantum degeneracy and interaction effects in spin-polarized Fermi-Bose mixtures
Various features of spin-polarized Fermi gases confined in harmonic traps are
discussed, taking into account possible perspectives of experimental
measurements. The mechanism of the expansion of the gas is explicitly
investigated and compared with the one of an interacting Bose gas. The role of
interactions on the equilibrium and non equilibrium behaviour of the fermionic
component in Fermi-Bose mixtures is discussed. Special emphasis is given to the
case of potassium isotopes mixtures.Comment: 5 pages, 3 figures, revtex, to be published in J. Phys.
Correlations of Globular Cluster Properties: Their Interpretations and Uses
Correlations among the independently measured physical properties of globular
clusters (GCs) can provide powerful tests for theoretical models and new
insights into their dynamics, formation, and evolution. We review briefly some
of the previous work, and present preliminary results from a comparative study
of GC correlations in the Local Group galaxies. The results so far indicate
that these diverse GC systems follow the same fundamental correlations,
suggesting a commonality of formative and evolutionary processes which produce
them.Comment: An invited review, to appear in "New Horizons in Globular Cluster
Astronomy", eds. G. Piotto, G. Meylan, S.G. Djorgovski, and M. Riello, ASPCS,
in press (2003). Latex file, 8 pages, 5 eps figures, style files include
Wigner Crystallization of a two dimensional electron gas in a magnetic field: single electrons versus electron pairs at the lattice sites
The ground state energy and the lowest excitations of a two dimensional
Wigner crystal in a perpendicular magnetic field with one and two electrons per
cell is investigated. In case of two electrons per lattice site, the
interaction of the electrons {\em within} each cell is taken into account
exactly (including exchange and correlation effects), and the interaction {\em
between} the cells is in second order (dipole) van der Waals approximation. No
further approximations are made, in particular Landau level mixing and {\em
in}complete spin polarization are accounted for. Therefore, our calculation
comprises a, roughly speaking, complementary description of the bubble phase
(in the special case of one and two electrons per bubble), which was proposed
by Koulakov, Fogler and Shklovskii on the basis of a Hartree Fock calculation.
The phase diagram shows that in GaAs the paired phase is energetically more
favorable than the single electron phase for, roughly speaking, filling factor
larger than 0.3 and density parameter smaller than 19 effective Bohr
radii (for a more precise statement see Fig.s 4 and 5). If we start within the
paired phase and increase magnetic field or decrease density, the pairs first
undergo some singlet- triplet transitions before they break.Comment: 11 pages, 7 figure
Globular Cluster Systems and the Missing Satellite Problem: Implications for Cold Dark Matter Models
We analyze the metallicity distributions of globular clusters belonging to 28
early-type galaxies in the survey of Kundu & Whitmore (2001). A Monte Carlo
algorithm which simulates the chemical evolution of galaxies that grow
hierarchically via dissipationless mergers is used to determine the most
probable protogalactic mass function for each galaxy. Contrary to the claims of
Kundu & Whitmore, we find that the observed metallicity distributions are in
close agreement with the predictions of such hierarchical formation models. The
mass spectrum of protogalactic fragments for the galaxies in our sample has a
power-law behavior, with an exponent of roughly -2. This spectrum is
indistinguishable from the mass spectrum of dark matter halos predicted by cold
dark matter models for structure formation. We argue that these protogalactic
fragments, the likely sites of globular cluster formation in the early
universe, are the disrupted remains of the "missing" satellite galaxies
predicted by cold dark matter models. Our findings suggest that the solution to
the missing satellite problem is through the suppression of gas accretion in
low-mass halos after reionization, or via self-interacting dark matter, and
argue against models with suppressed small-scale power or warm dark matter.Comment: 28 pages, 19 postscript figures. Accepted for publication in the
Astrophysical Journa
- …
