907 research outputs found

    Thermoelectric transport through strongly correlated quantum dots

    Get PDF
    The thermoelectric properties of strongly correlated quantum dots, described by a single level Anderson model coupled to conduction electron leads, is investigated using Wilson's numerical renormalization group method. We calculate the electronic contribution, KeK_{\rm e}, to the thermal conductance, the thermopower, SS, and the electrical conductance, GG, of a quantum dot as a function of both temperature, TT, and gate voltage, vg{\rm v}_g, for strong, intermediate and weak Coulomb correlations, UU, on the dot. For strong correlations and in the Kondo regime, we find that the thermopower exhibits two sign changes, at temperatures T1(vg)T_{1}({\rm v}_g) and T2(vg)T_{2}({\rm v}_g) with T1<T2T_{1}< T_{2}. Such sign changes in S(T)S(T) are particularly sensitive signatures of strong correlations and Kondo physics. The relevance of this to recent thermopower measurements of Kondo correlated quantum dots is discussed. We discuss the figure of merit, power factor and the degree of violation of the Wiedemann-Franz law in quantum dots. The extent of temperature scaling in the thermopower and thermal conductance of quantum dots in the Kondo regime is also assessed.Comment: 21 pages, 12 figures; published versio

    Spectral properties of a two-orbital Anderson impurity model across a non-Fermi liquid fixed point

    Full text link
    We study by NRG the spectral properties of a two-orbital Anderson impurity model in the presence of an exchange splitting which follows either regular or inverted Hund's rules. The phase diagram contains a non-Fermi liquid fixed point separating a screened phase, where conventional Kondo effect occurs, from an unscreened one, where the exchange-splitting takes care of quenching the impurity degrees of freedom. On the Kondo screened side close to this fixed point the impurity density of states shows a narrow Kondo-peak on top of a broader resonance. This narrow peak transforms in the unscreened phase into a narrow pseudo-gap inside the broad resonance. Right at the fixed point only the latter survives. The fixed point is therefore identified by a jump of the density of states at the chemical potential. We also show that particle-hole perturbations which simply shift the orbital energies do not wash out the fixed point, unlike those perturbations which hybridize the two orbitals. Consequently the density-of-state jump at the chemical potential remains finite even away from particle-hole symmetry, and the pseudo-gap stays pinned at the chemical potential, although it is partially filled in. We also discuss the relevance of these results for lattice models which map onto this Anderson impurity model in the limit of large lattice-coordination. Upon approaching the Mott metal-insulator transition, these lattice models necessarily enter a region with a local criticality which reflects the impurity non-Fermi liquid fixed point. However, unlike the impurity, the lattice can get rid of the single-impurity fixed-point instability by spontaneously developing bulk-coherent symmetry-broken phases, which we identify for different lattice models.Comment: 43 pages, 11 figures. Minor corrections in the Appendi

    Numerical renormalization group calculation of impurity internal energy and specific heat of quantum impurity models

    Get PDF
    We introduce a method to obtain the specific heat of quantum impurity models via a direct calculation of the impurity internal energy requiring only the evaluation of local quantities within a single numerical renormalization group (NRG) calculation for the total system. For the Anderson impurity model, we show that the impurity internal energy can be expressed as a sum of purely local static correlation functions and a term that involves also the impurity Green function. The temperature dependence of the latter can be neglected in many cases, thereby allowing the impurity specific heat, CimpC_{\rm imp}, to be calculated accurately from local static correlation functions; specifically via Cimp=EionicT+1/2EhybTC_{\rm imp}=\frac{\partial E_{\rm ionic}}{\partial T} + 1/2\frac{\partial E_{\rm hyb}}{\partial T}, where EionicE_{\rm ionic} and EhybE_{\rm hyb} are the energies of the (embedded) impurity and the hybridization energy, respectively. The term involving the Green function can also be evaluated in cases where its temperature dependence is non-negligible, adding an extra term to CimpC_{\rm imp}. For the non-degenerate Anderson impurity model, we show by comparison with exact Bethe ansatz calculations that the results recover accurately both the Kondo induced peak in the specific heat at low temperatures as well as the high temperature peak due to the resonant level. The approach applies to multiorbital and multichannel Anderson impurity models with arbitrary local Coulomb interactions. An application to the Ohmic two state system and the anisotropic Kondo model is also given, with comparisons to Bethe ansatz calculations. The new approach could also be of interest within other impurity solvers, e.g., within quantum Monte Carlo techniques.Comment: 16 pages, 15 figures, published versio

    The numerical renormalization group method for quantum impurity systems

    Full text link
    In the beginning of the 1970's, Wilson developed the concept of a fully non-perturbative renormalization group transformation. Applied to the Kondo problem, this numerical renormalization group method (NRG) gave for the first time the full crossover from the high-temperature phase of a free spin to the low-temperature phase of a completely screened spin. The NRG has been later generalized to a variety of quantum impurity problems. The purpose of this review is to give a brief introduction to the NRG method including some guidelines of how to calculate physical quantities, and to survey the development of the NRG method and its various applications over the last 30 years. These applications include variants of the original Kondo problem such as the non-Fermi liquid behavior in the two-channel Kondo model, dissipative quantum systems such as the spin-boson model, and lattice systems in the framework of the dynamical mean field theory.Comment: 55 pages, 27 figures, submitted to Rev. Mod. Phy

    Mechanism for large thermoelectric power in negative-U molecular quantum dots

    Full text link
    We investigate with the aid of numerical renormalization group techniques the thermoelectric properties of a molecular quantum dot described by the negative-U Anderson model. We show that the charge Kondo effect provides a mechanism for enhanced thermoelectric power via a correlation induced asymmetry in the spectral function close to the Fermi level. We show that this effect results in a dramatic enhancement of the Kondo induced peak in the thermopower of negative-U systems with Seebeck coefficients exceeding 50μV/K\mu V/K over a wide range of gate voltages.Comment: 4 pages, 4 figures; published versio

    Anderson impurity model at finite Coulomb interaction U: generalized Non-crossing Approximation

    Full text link
    We present an extension of the non-crossing approximation (NCA), which is widely used to calculate properties of Anderson impurity models in the limit of infinite Coulomb repulsion UU\to\infty, to the case of finite UU. A self-consistent conserving pseudo-particle representation is derived by symmetrizing the usual NCA diagrams with respect to empty and doubly occupied local states. This requires an infinite summation of skeleton diagrams in the generating functional thus defining the ``Symmetrized finite-U NCA'' (SUNCA). We show that within SUNCA the low energy scale TKT_K (Kondo temperature) is correctly obtained, in contrast to other simpler approximations discussed in the literature.Comment: 7 pages, 6 figure

    Evaluating the expression of urokinase and tissue leukocyte being in benign and malignant breast disease

    Get PDF
    Introduction: Our objectives is to show that the expression of uPA leukocyte could be considered, in the future, as a marker of the expression of uPA in the malignant tissue and therefore a potential indicator of prognosis. Methods: We examined the expression of uPa in leukocytes and tissues of three groups of women: with breast cancer; with benign breast lesion and healthy women (control group). We used RT Real Time PCR assay. The expression of urokinase is significantly higher in malignant breast lumps compared to benign lesions. However, in women with carcinoma of the breast, malignant tissue expresses higher amounts of uPA than the healthy counterpart. There are no statistically significant differences in the expression of uPA, between tissues taken from women with benign lesions. The lymphocytes taken from healthy volunteers show a level of expression of uPA significantly lower than the other tested samples Lymphocytes extracted from cancer patients express higher amounts of uPA compared to lymphocytes belonging to women with benign breast lesions. The expression of uPA was compared with the clinical and biological parameters commonly used in clinical practice for the definition of the prognosis. The only exception found, concerns those tumors characterized by the simultaneous negativity for estrogen receptors, progesterone and HER2 (state of triple negative), in which the expression of uPA is very high. Results and conclusions: Our data show that uPA expressed by leukocytes of each individual patient is the mirror image of the one expressed by malignant nodular uPA.Introduction: Our objectives is to show that the expression of uPA leukocyte could be considered, in the future, as a marker of the expression of uPA in the malignant tissue and therefore a potential indicator of prognosis. Methods: We examined the expression of uPa in leukocytes and tissues of three groups of women: with breast cancer; with benign breast lesion and healthy women (control group). We used RT Real Time PCR assay. The expression of urokinase is significantly higher in malignant breast lumps compared to benign lesions. However, in women with carcinoma of the breast, malignant tissue expresses higher amounts of uPA than the healthy counterpart. There are no statistically significant differences in the expression of uPA, between tissues taken from women with benign lesions. The lymphocytes taken from healthy volunteers show a level of expression of uPA significantly lower than the other tested samples Lymphocytes extracted from cancer patients express higher amounts of uPA compared to lymphocytes belonging to women with benign breast lesions. The expression of uPA was compared with the clinical and biological parameters commonly used in clinical practice for the definition of the prognosis. The only exception found, concerns those tumors characterized by the simultaneous negativity for estrogen receptors, progesterone and HER2 (state of triple negative), in which the expression of uPA is very high. Results and conclusions: Our data show that uPA expressed by leukocytes of each individual patient is the mirror image of the one expressed by malignant nodular uPA

    Interplay of Coulomb interaction and spin-orbit effects in multi-level quantum dots

    Full text link
    We study electron transport through a multi-level quantum dot with Rashba spin-orbit interaction in the presence of local Coulomb repulsion. Motivated by recent experiments, we compute the level splitting induced by the spin-orbit interaction at finite Zeeman fields BB, which provides a measure of the renormalized spin-orbit energy. This level splitting is responsible for the suppression of the Kondo ridges at finite BB characteristic for the multi-level structure. In addition, the dependence of renormalized gg-factors on the relative orientation of the applied BB field and the spin-orbit direction following two different protocols used in experiments is investigated.Comment: 11 pages, 13 figure

    Quantum Magnetic Impurities in Magnetically Ordered Systems

    Full text link
    We discuss the problem of a spin 1/2 impurity immersed in a spin S magnetically ordered background. We show that the problem maps onto a generalization of the dissipative two level system (DTLS) with two independent heat baths, associated with the Goldstone modes of the magnet, that couple to different components of the impurity spin operator. Using analytical perturbative renormalization group (RG) methods and accurate numerical renormalization group (NRG) we show that contrary to other dissipative models there is quantum frustration of decoherence and quasi-scaling even in the strong coupling regime. We make predictions for the behavior of the impurity magnetic susceptibility that can be measured in nuclear magnetic resonance (NMR) experiments. Our results may also have relevance to quantum computation.Comment: 4 pages, 3 figure

    Renormalization Group Approach to Non-equilibrium Green Functions in Correlated Impurity Systems

    Full text link
    We present a technique for calculating non-equilibrium Green functions for impurity systems with local interactions. We use an analogy to the calculation of response functions in the x-ray problem.The initial state and the final state problems, which correspond to the situations before and after the disturbance (an electric or magnetic field, for example) is suddenly switched on, are solved with the aid of Wilson's momentum shell renormalization group. The method is illustrated by calculating the non-equilibrium dynamics of the ohmic two-state problem.Comment: 7 pages, 2 figure
    corecore