144 research outputs found
Gain-of-Function R225W Mutation in Human AMPKγ3 Causing Increased Glycogen and Decreased Triglyceride in Skeletal Muscle
BACKGROUND: AMP-activated protein kinase (AMPK) is a heterotrimeric enzyme that is evolutionarily conserved from yeast to mammals and functions to maintain cellular and whole body energy homeostasis. Studies in experimental animals demonstrate that activation of AMPK in skeletal muscle protects against insulin resistance, type 2 diabetes and obesity. The regulatory gamma(3) subunit of AMPK is expressed exclusively in skeletal muscle; however, its importance in controlling overall AMPK activity is unknown. While evidence is emerging that gamma subunit mutations interfere specifically with AMP activation, there remains some controversy regarding the impact of gamma subunit mutations. Here we report the first gain-of-function mutation in the muscle-specific regulatory gamma(3) subunit in humans. METHODS AND FINDINGS: We sequenced the exons and splice junctions of the AMPK gamma(3) gene (PRKAG3) in 761 obese and 759 lean individuals, identifying 87 sequence variants including a novel R225W mutation in subjects from two unrelated families. The gamma(3) R225W mutation is homologous in location to the gamma(2)R302Q mutation in patients with Wolf-Parkinson-White syndrome and to the gamma(3)R225Q mutation originally linked to an increase in muscle glycogen content in purebred Hampshire Rendement Napole (RN-) pigs. We demonstrate in differentiated muscle satellite cells obtained from the vastus lateralis of R225W carriers that the mutation is associated with an approximate doubling of both basal and AMP-activated AMPK activities. Moreover, subjects bearing the R225W mutation exhibit a approximately 90% increase of skeletal muscle glycogen content and a approximately 30% decrease in intramuscular triglyceride (IMTG). CONCLUSIONS: We have identified for the first time a mutation in the skeletal muscle-specific regulatory gamma(3) subunit of AMPK in humans. The gamma(3)R225W mutation has significant functional effects as demonstrated by increases in basal and AMP-activated AMPK activities, increased muscle glycogen and decreased IMTG. Overall, these findings are consistent with an important regulatory role for AMPK gamma(3) in human muscle energy metabolism
Increased FAT/CD36 Cycling and Lipid Accumulation in Myotubes Derived from Obese Type 2 Diabetic Patients
BACKGROUND: Permanent fatty acid translocase (FAT/)CD36 relocation has previously been shown to be related to abnormal lipid accumulation in the skeletal muscle of type 2 diabetic patients, however mechanisms responsible for the regulation of FAT/CD36 expression and localization are not well characterized in human skeletal muscle. METHODOLOGY/PRINCIPAL FINDINGS: Primary muscle cells derived from obese type 2 diabetic patients (OBT2D) and from healthy subjects (Control) were used to examine the regulation of FAT/CD36. We showed that compared to Control myotubes, FAT/CD36 was continuously cycling between intracellular compartments and the cell surface in OBT2D myotubes, independently of lipid raft association, leading to increased cell surface FAT/CD36 localization and lipid accumulation. Moreover, we showed that FAT/CD36 cycling and lipid accumulation were specific to myotubes and were not observed in reserve cells. However, in Control myotubes, the induction of FAT/CD36 membrane translocation by the activation of (AMP)-activated protein kinase (AMPK) pathway did not increase lipid accumulation. This result can be explained by the fact that pharmacological activation of AMPK leads to increased mitochondrial beta-oxidation in Control cells. CONCLUSION/SIGNIFICANCE: Lipid accumulation in myotubes derived from obese type 2 diabetic patients arises from abnormal FAT/CD36 cycling while lipid accumulation in Control cells results from an equilibrium between lipid uptake and oxidation. As such, inhibiting FAT/CD36 cycling in the skeletal muscle of obese type 2 diabetic patients should be sufficient to diminish lipid accumulation
EMG-Normalised Kinase Activation during Exercise Is Higher in Human Gastrocnemius Compared to Soleus Muscle
In mice, certain proteins show a highly confined expression in specific muscle groups. Also, resting and exercise/contraction-induced phosphorylation responses are higher in rat skeletal muscle with low mitochondrial content compared to muscles with high mitochondrial content, possibly related to differential reactive oxygen species (ROS)-scavenging ability or resting glycogen content. To evaluate these parameters in humans, biopsies from soleus, gastrocnemius and vastus lateralis muscles were taken before and after a 45 min inclined (15%) walking exercise bout at 69% VO2max aimed at simultaneously activating soleus and gastrocnemius in a comparable dynamic work-pattern. Hexokinase II and GLUT4 were 46–59% and 26–38% higher (p<0.05) in soleus compared to the two other muscles. The type I muscle fiber percentage was highest in soleus and lowest in vastus lateralis. No differences were found in protein expression of signalling proteins (AMPK subunits, eEF2, ERK1/2, TBC1D1 and 4), mitochondrial markers (F1 ATPase and COX1) or ROS-handling enzymes (SOD2 and catalase). Gastrocnemius was less active than soleus measured as EMG signal and glycogen use yet gastrocnemius displayed larger increases than soleus in phosphorylation of AMPK Thr172, eEF2 Thr56 and ERK 1/2 Thr202/Tyr204 when normalised to the mean relative EMG-signal. In conclusion, proteins with muscle-group restricted expression in mice do not show this pattern in human lower extremity muscle groups. Nonetheless the phosphorylation-response is greater for a number of kinase signalling pathways in human gastrocnemius than soleus at a given activation-intensity. This may be due to the combined subtle effects of a higher type I muscle fiber content and higher training status in soleus compared to gastrocnemius muscle
Remodeling Lipid Metabolism and Improving Insulin Responsiveness in Human Primary Myotubes
OBJECTIVE: Disturbances in lipid metabolism are strongly associated with insulin resistance and type 2 diabetes (T2D). We hypothesized that activation of cAMP/PKA and calcium signaling pathways in cultured human myotubes would provide further insight into regulation of lipid storage, lipolysis, lipid oxidation and insulin responsiveness. METHODS: Human myoblasts were isolated from vastus lateralis, purified, cultured and differentiated into myotubes. All cells were incubated with palmitate during differentiation. Treatment cells were pulsed 1 hour each day with forskolin and ionomycin (PFI) during the final 3 days of differentiation to activate the cAMP/PKA and calcium signaling pathways. Control cells were not pulsed (control). Mitochondrial content, (14)C lipid oxidation and storage were measured, as well as lipolysis and insulin-stimulated glycogen storage. Myotubes were stained for lipids and gene expression measured. RESULTS: PFI increased oxidation of oleate and palmitate to CO(2) (p<0.001), isoproterenol-stimulated lipolysis (p = 0.01), triacylglycerol (TAG) storage (p<0.05) and mitochondrial DNA copy number (p = 0.01) and related enzyme activities. Candidate gene and microarray analysis revealed increased expression of genes involved in lipolysis, TAG synthesis and mitochondrial biogenesis. PFI increased the organization of lipid droplets along the myofibrillar apparatus. These changes in lipid metabolism were associated with an increase in insulin-mediated glycogen storage (p<0.001). CONCLUSIONS: Activation of cAMP/PKA and calcium signaling pathways in myotubes induces a remodeling of lipid droplets and functional changes in lipid metabolism. These results provide a novel pharmacological approach to promote lipid metabolism and improve insulin responsiveness in myotubes, which may be of therapeutic importance for obesity and type 2 diabetes
Four novel UCP3 gene variants associated with childhood obesity: effect on fatty acid oxidation and on prevention of triglyceride storage
The objective of the study was to look for uncoupling protein 3 (UCP3) gene variants in early-onset severe childhood obesity and to determine their effect on long-chain fatty acid oxidation and triglyceride storage
A high fat diet increases mitochondrial fatty acid oxidation and uncoupling to decrease efficiency in rat heart
Elevated levels of cardiac mitochondrial uncoupling protein 3 (UCP3) and decreased cardiac efficiency (hydraulic power/oxygen consumption) with abnormal cardiac function occur in obese, diabetic mice. To determine whether cardiac mitochondrial uncoupling occurs in non-genetic obesity, we fed rats a high fat diet (55% kcal from fat) or standard laboratory chow (7% kcal from fat) for 3 weeks, after which we measured cardiac function in vivo using cine MRI, efficiency in isolated working hearts and respiration rates and ADP/O ratios in isolated interfibrillar mitochondria; also, measured were medium chain acyl-CoA dehydrogenase (MCAD) and citrate synthase activities plus uncoupling protein 3 (UCP3), mitochondrial thioesterase 1 (MTE-1), adenine nucleotide translocase (ANT) and ATP synthase protein levels. We found that in vivo cardiac function was the same for all rats, yet oxygen consumption was 19% higher in high fat-fed rat hearts, therefore, efficiency was 21% lower than in controls. We found that mitochondrial fatty acid oxidation rates were 25% higher, and MCAD activity was 23% higher, in hearts from rats fed the high fat diet when compared with controls. Mitochondria from high fat-fed rat hearts had lower ADP/O ratios than controls, indicating increased respiratory uncoupling, which was ameliorated by GDP, a UCP3 inhibitor. Mitochondrial UCP3 and MTE-1 levels were both increased by 20% in high fat-fed rat hearts when compared with controls, with no significant change in ATP synthase or ANT levels, or citrate synthase activity. We conclude that increased cardiac oxygen utilisation, and thereby decreased cardiac efficiency, occurs in non-genetic obesity, which is associated with increased mitochondrial uncoupling due to elevated UCP3 and MTE-1 levels
Recommended from our members
Skeletal muscle overexpression of nicotinamide phosphoribosyl transferase in mice coupled with voluntary exercise augments exercise endurance
Objective: Nicotinamide phosphoribosyl transferase (NAMPT) is the rate-limiting enzyme in the salvage pathway that produces nicotinamide adenine dinucleotide (NAD+), an essential co-substrate regulating a myriad of signaling pathways. We produced a mouse that overexpressed NAMPT in skeletal muscle (NamptTg) and hypothesized that NamptTg mice would have increased oxidative capacity, endurance performance, and mitochondrial gene expression, and would be rescued from metabolic abnormalities that developed with high fat diet (HFD) feeding. Methods: Insulin sensitivity (hyperinsulinemic-euglycemic clamp) was assessed in NamptTg and WT mice fed very high fat diet (VHFD, 60% by kcal) or chow diet (CD). The aerobic capacity (VO2max) and endurance performance of NamptTg and WT mice before and after 7 weeks of voluntary exercise training (running wheel in home cage) or sedentary conditions (no running wheel) were measured. Skeletal muscle mitochondrial gene expression was also measured in exercised and sedentary mice and in mice fed HFD (45% by kcal) or low fat diet (LFD, 10% by kcal). Results: NAMPT enzyme activity in skeletal muscle was 7-fold higher in NamptTg mice versus WT mice. There was a concomitant 1.6-fold elevation of skeletal muscle NAD+. NamptTg mice fed VHFD were partially protected against body weight gain, but not against insulin resistance. Notably, voluntary exercise training elicited a 3-fold higher exercise endurance in NamptTg versus WT mice. Mitochondrial gene expression was higher in NamptTg mice compared to WT mice, especially when fed HFD. Mitochondrial gene expression was higher in exercised NamptTg mice than in sedentary WT mice. Conclusions: Our studies have unveiled a fascinating interaction between elevated NAMPT activity in skeletal muscle and voluntary exercise that was manifest as a striking improvement in exercise endurance
The role of the myosin ATPase activity in adaptive thermogenesis by skeletal muscle
Resting skeletal muscle is a major contributor to adaptive thermogenesis, i.e., the thermogenesis that changes in response to exposure to cold or to overfeeding. The identification of the “furnace” that is responsible for increased heat generation in resting muscle has been the subject of a number of investigations. A new state of myosin, the super relaxed state (SRX), with a very slow ATP turnover rate has recently been observed in skeletal muscle (Stewart et al. in Proc Natl Acad Sci USA 107:430–435, 2010). Inhibition of the myosin ATPase activity in the SRX was suggested to be caused by binding of the myosin head to the core of the thick filament in a structural motif identified earlier by electron microscopy. To be compatible with the basal metabolic rate observed in vivo for resting muscle, most myosin heads would have to be in the SRX. Modulation of the population of this state, relative to the normal relaxed state, was proposed to be a major contributor to adaptive thermogenesis in resting muscle. Transfer of only 20% of myosin heads from the SRX into the normal relaxed state would cause muscle thermogenesis to double. Phosphorylation of the myosin regulatory light chain was shown to transfer myosin heads from the SRX into the relaxed state, which would increase thermogenesis. In particular, thermogenesis by myosin has been proposed to play a role in the dissipation of calories during overfeeding. Up-regulation of muscle thermogenesis by pharmaceuticals that target the SRX would provide new approaches to the treatment of obesity or high blood sugar levels
- …