622 research outputs found

    Phenotypic Plasticity in Juvenile Jellyfish Medusae Facilitates Effective Animal–Fluid Interaction

    Get PDF
    Locomotion and feeding in marine animals are intimately linked to the flow dynamics created by specialized body parts. This interaction is of particular importance during ontogeny, when changes in behaviour and scale challenge the organism with shifts in fluid regimes and altered functionality. Previous studies have indicated that Scyphozoan jellyfish ontogeny accommodates the changes in fluid dynamics associated with increasing body dimensions and velocities during development. However, in addition to scale and behaviour that—to a certain degree—underlie the control of the animal, flow dynamics are also dependent on external factors such as temperature. Here, we show phenotypic plasticity in juvenile Aurelia aurita medusae, where morphogenesis is adapted to altered fluid regimes imposed by changes in ambient temperature. In particular, differential proportional growth was found to compensate for temperature-dependent changes in viscous effects, enabling the animal to use adhering water boundary layers as ‘paddles’—and thus economize tissue—at low temperatures, while switching to tissue-dominated propulsion at higher temperatures where the boundary layer thickness is insufficient to serve for paddling. This effect was predicted by a model of animal–fluid interaction and confirmed empirically by flow-field visualization and assays of propulsion efficiency

    Giardia Cyst Wall Protein 1 Is a Lectin That Binds to Curled Fibrils of the GalNAc Homopolymer

    Get PDF
    The infectious and diagnostic stage of Giardia lamblia (also known as G. intestinalis or G. duodenalis) is the cyst. The Giardia cyst wall contains fibrils of a unique β-1,3-linked N-acetylgalactosamine (GalNAc) homopolymer and at least three cyst wall proteins (CWPs) composed of Leu-rich repeats (CWPLRR) and a C-terminal conserved Cys-rich region (CWPCRR). Our goals were to dissect the structure of the cyst wall and determine how it is disrupted during excystation. The intact Giardia cyst wall is thin (~400 nm), easily fractured by sonication, and impermeable to small molecules. Curled fibrils of the GalNAc homopolymer are restricted to a narrow plane and are coated with linear arrays of oval-shaped protein complex. In contrast, cyst walls of Giardia treated with hot alkali to deproteinate fibrils of the GalNAc homopolymer are thick (~1.2 µm), resistant to sonication, and permeable. The deproteinated GalNAc homopolymer, which forms a loose lattice of curled fibrils, is bound by native CWP1 and CWP2, as well as by maltose-binding protein (MBP)-fusions containing the full-length CWP1 or CWP1LRR. In contrast, neither MBP alone nor MBP fused to CWP1CRR bind to the GalNAc homopolymer. Recombinant CWP1 binds to the GalNAc homopolymer within secretory vesicles of Giardia encysting in vitro. Fibrils of the GalNAc homopolymer are exposed during excystation or by treatment of heat-killed cysts with chymotrypsin, while deproteinated fibrils of the GalNAc homopolymer are degraded by extracts of Giardia cysts but not trophozoites. These results show the Leu-rich repeat domain of CWP1 is a lectin that binds to curled fibrils of the GalNAc homopolymer. During excystation, host and Giardia proteases appear to degrade bound CWPs, exposing fibrils of the GalNAc homopolymer that are digested by a stage-specific glycohydrolase. Author SummaryWhile the walls of plants and fungi contain numerous sugar homopolymers (cellulose, chitin, and β-1,3-glucans) and dozens of proteins, the cyst wall of Giardia is relatively simple. The Giardia wall contains a unique homopolymer of β-1,3-linked N-acetylgalactosamine (GalNAc) and at least three cyst wall proteins (CWPs), each of which is composed of Leu-rich repeats and a C-terminal Cys-rich region. The three major discoveries here are: 1) Fibrils of the GalNAc homopolymer are curled and form a lattice that is compressed into a narrow plane by bound protein in intact cyst walls. 2) Leu-rich repeats of CWP1 form a novel lectin domain that is specific for fibrils of the GalNAc homopolymer, which can be isolated by methods used to deproteinate fungal walls. 3) A cyst-specific glycohydrolase is able to degrade deproteinated fibrils of the GalNAc homopolymer. We incorporate these findings into a new curled fiber and lectin model of the intact Giardia cyst wall and a protease and glycohydrolase model of excystation.National Institutes of Health (AI048082, AI44070, GM31318, RR1088

    The TREC2001 video track: information retrieval on digital video information

    Get PDF
    The development of techniques to support content-based access to archives of digital video information has recently started to receive much attention from the research community. During 2001, the annual TREC activity, which has been benchmarking the performance of information retrieval techniques on a range of media for 10 years, included a ”track“ or activity which allowed investigation into approaches to support searching through a video library. This paper is not intended to provide a comprehensive picture of the different approaches taken by the TREC2001 video track participants but instead we give an overview of the TREC video search task and a thumbnail sketch of the approaches taken by different groups. The reason for writing this paper is to highlight the message from the TREC video track that there are now a variety of approaches available for searching and browsing through digital video archives, that these approaches do work, are scalable to larger archives and can yield useful retrieval performance for users. This has important implications in making digital libraries of video information attainable

    Transitions in morphologies, fluid regimes, and feeding mechanisms during development of the medusa Lychnorhiza lucerna

    Get PDF
    Author Posting. © The Author(s), 2016. This is the author's version of the work. It is posted here by permission of Inter-Research for personal use, not for redistribution. The definitive version was published in Marine Ecology Progress Series 557 (2016): 145-159, doi:10.3354/meps11855.The early ontogeny of scyphomedusae involves morphological and functional transitions in body plans that affect the predators’ propulsive and feeding strategies. We applied high-speed videography, digital particle image velocimetry (DPIV) and dye visualization techniques to evaluate alterations in swimming and feeding mechanisms during ontogeny of the rhizostome medusa Lychnorhiza lucerna Haeckel, 1880 (Scyphozoa, Rhizostomeae). During early ontogeny, the ephyral mouth lips develop into complex filtering structures along the oral arms. The viscous environments (Reynolds number <100) experienced by ephyrae constrain the feeding mechanisms that transport fluid during ephyral bell pulsations. In contrast, adult medusan fluid flows are dominated by inertial forces and bell pulsations effectively transport fluids and entrained prey toward the oral arms. The oral arm surfaces are covered by motile epidermal cilia that drive these entrained flows through filtering gaps in the oral arms where food particles are retained. In addition to this process within the oral arms, vortices generated during bell pulsation flow downstream along the outside of the medusae and continuously transport prey toward the exterior oral arm surfaces. Although calanoid copepods are capable of escape velocities that greatly exceed L. lucerna’s feeding current speeds, copepods often fail to detect the predator’s feeding currents or inadvertently jump into medusan capture surfaces during failed escape attempts. Consequently, the comparatively weak predator feeding currents successfully capture a portion of the copepods encountered by swimming medusae. These results clarify the processes that enable rhizostome medusae to play key roles as consumers in tropical and subtropical coastal environments.The study was partially funded by grants 2011/00436-8, 2013/19478-8, and 2014/00824-6 São Paulo Research Foundation (FAPESP), and CAPES PROEX2017-09-2

    The cytosolic entry of diphtheria toxin catalytic domain requires a host cell cytosolic translocation factor complex

    Get PDF
    In vitro delivery of the diphtheria toxin catalytic (C) domain from the lumen of purified early endosomes to the external milieu requires the addition of both ATP and a cytosolic translocation factor (CTF) complex. Using the translocation of C-domain ADP-ribosyltransferase activity across the endosomal membrane as an assay, the CTF complex activity was 650–800-fold purified from human T cell and yeast extracts, respectively. The chaperonin heat shock protein (Hsp) 90 and thioredoxin reductase were identified by mass spectrometry sequencing in CTF complexes purified from both human T cell and yeast. Further analysis of the role played by these two proteins with specific inhibitors, both in the in vitro translocation assay and in intact cell toxicity assays, has demonstrated their essential role in the productive delivery of the C-domain from the lumen of early endosomes to the external milieu. These results confirm and extend earlier observations of diphtheria toxin C-domain unfolding and refolding that must occur before and after vesicle membrane translocation. In addition, results presented here demonstrate that thioredoxin reductase activity plays an essential role in the cytosolic release of the C-domain. Because analogous CTF complexes have been partially purified from mammalian and yeast cell extracts, results presented here suggest a common and fundamental mechanism for C-domain translocation across early endosomal membranes

    Project Medusa in the Context of its Historical Time

    Get PDF
    In 2000, the National Science Foundation, in union with Croatian and Slovenian science ministries, provided initial support for the international collaboration that has become Meduza project. The program was started with the goal of international collaboration. Our initial objective was simple - use this international collaboration to develop exiting scientific research involving medusae in Southern Adriatic waters. This international collaborationa has been of great importance personally and professionally to all of the investigators and institutions involved in the project, but we now ask what objective difference has the project made scientifically. We approach this question by comparing what we might accomplish at the project\u27s outset to how we now view of research on gelatinous zooplankton because of research in the Meduza project. Work outside the also has affected our views but we describe here research produced through the project that has contributed substantially to broadening our perspectives in three major areas of investigations: modes of propulsion, mechanics of predation, and trophic significance of medusae

    Tuberculosis in cattle: the results of the four-area project

    Get PDF
    <p/> <p>The four-area project was undertaken to further assess the impact of badger removal on the control of tuberculosis in cattle herds in Ireland. It was conducted between 1997 and 2002 in matched removal and reference areas in four counties, namely Cork, Donegal, Kilkenny and Monaghan, representing a wide range of Irish farming environments. In the removal areas, a proactive programme of badger removal was conducted, on two or three occasions each year, whereas in the reference areas, badger removal was entirely reactive following severe outbreaks of tuberculosis amongst cattle. A detailed statistical analysis of this study has already been presented by Griffin <it>et al. </it><abbrgrp><abbr bid="B13">13</abbr></abbrgrp>; this paper presents further, mainly descriptive, findings from the study. In total, 2,360 badgers were captured in the removal areas of which 450 (19.5%) were considered positive for tuberculosis and 258 badgers were captured in the reference areas, with 57 (26.1%) positive for tuberculosis. The annual incidence of confirmed herd restrictions was lower in the removal area compared to the reference area in every year of the study period in each of the four counties. These empirical findings were consistent with the hazard ratios found by Griffin <it>et al. </it><abbrgrp><abbr bid="B13">13</abbr></abbrgrp>. Further, the effect of proactive badger removal on cattle tuberculosis in the four-area project and in the earlier east-Offaly project, as measured using the number of reactors per 1,000 cattle tested, were very similar, providing compelling evidence of the role of badgers in the epidemiology of tuberculosis in Irish cattle herds. The validity of the four-area project was discussed in detail. Efforts to minimise badger-to-cattle transmission in Ireland must be undertaken in association with the current comprehensive control programme, which has effectively minimised opportunities for cattle-to-cattle transmission.</p

    Nrf2 is overexpressed in pancreatic cancer: implications for cell proliferation and therapy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Nrf2 is a key transcriptional regulator of a battery of genes that facilitate phase II/III drug metabolism and defence against oxidative stress. Nrf2 is largely regulated by Keap1, which directs Nrf2 for proteasomal degradation. The Nrf2/Keap1 system is dysregulated in lung, head and neck, and breast cancers and this affects cellular proliferation and response to therapy. Here, we have investigated the integrity of the Nrf2/Keap1 system in pancreatic cancer.</p> <p>Results</p> <p>Keap1, Nrf2 and the Nrf2 target genes AKR1c1 and GCLC were detected in a panel of five pancreatic cancer cell lines. Mutation analysis of <it>NRF2 </it>exon 2 and <it>KEAP1 </it>exons 2-6 in these cell lines identified no mutations in <it>NRF2 </it>and only synonomous mutations in <it>KEAP1</it>. RNAi depletion of Nrf2 caused a decrease in the proliferation of Suit-2, MiaPaca-2 and FAMPAC cells and enhanced sensitivity to gemcitabine (Suit-2), 5-flurouracil (FAMPAC), cisplatin (Suit-2 and FAMPAC) and gamma radiation (Suit-2). The expression of Nrf2 and Keap1 was also analysed in pancreatic ductal adenocarcinomas (n = 66 and 57, respectively) and matching normal benign epithelium (n = 21 cases). Whilst no significant correlation was seen between the expression levels of Keap1 and Nrf2 in the tumors, interestingly, Nrf2 staining was significantly greater in the cytoplasm of tumors compared to benign ducts (P < 0.001).</p> <p>Conclusions</p> <p>Expression of Nrf2 is up-regulated in pancreatic cancer cell lines and ductal adenocarcinomas. This may reflect a greater intrinsic capacity of these cells to respond to stress signals and resist chemotherapeutic interventions. Nrf2 also appears to support proliferation in certain pancreatic adenocarinomas. Therefore, strategies to pharmacologically manipulate the levels and/or activity of Nrf2 may have the potential to reduce pancreatic tumor growth, and increase sensitivity to therapeutics.</p

    Propulsion in cubomedusae : mechanisms and utility

    Get PDF
    © The Author(s), 2013. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in PLoS ONE 8 (2013): e56393, doi:10.1371/journal.pone.0056393.Evolutionary constraints which limit the forces produced during bell contractions of medusae affect the overall medusan morphospace such that jet propulsion is limited to only small medusae. Cubomedusae, which often possess large prolate bells and are thought to swim via jet propulsion, appear to violate the theoretical constraints which determine the medusan morphospace. To examine propulsion by cubomedusae, we quantified size related changes in wake dynamics, bell shape, swimming and turning kinematics of two species of cubomedusae, Chironex fleckeri and Chiropsella bronzie. During growth, these cubomedusae transitioned from using jet propulsion at smaller sizes to a rowing-jetting hybrid mode of propulsion at larger sizes. Simple modifications in the flexibility and kinematics of their velarium appeared to be sufficient to alter their propulsive mode. Turning occurs during both bell contraction and expansion and is achieved by generating asymmetric vortex structures during both stages of the swimming cycle. Swimming characteristics were considered in conjunction with the unique foraging strategy used by cubomedusae.This work was supported by an ONR MURI award (N000140810654) and National Science Foundation grant OCE 0623508 to JHC, SPC, JOD. And the work was supported by the Roger Williams University Foundation to Promote Scholarship
    corecore