2,640 research outputs found

    Fast-swimming hydromedusae exploit velar kinematics to form an optimal vortex wake

    Get PDF
    Fast-swimming hydromedusan jellyfish possess a characteristic funnel-shaped velum at the exit of their oral cavity that interacts with the pulsed jets of water ejected during swimming motions. It has been previously assumed that the velum primarily serves to augment swimming thrust by constricting the ejected flow in order to produce higher jet velocities. This paper presents high-speed video and dye-flow visualizations of free-swimming Nemopsis bachei hydromedusae, which instead indicate that the time-dependent velar kinematics observed during the swimming cycle primarily serve to optimize vortices formed by the ejected water rather than to affect the speed of the ejected flow. Optimal vortex formation is favorable in fast-swimming jellyfish because, unlike the jet funnelling mechanism, it allows for the minimization of energy costs while maximizing thrust forces. However, the vortex `formation number' corresponding to optimality in N. bachei is substantially greater than the value of 4 found in previous engineering studies of pulsed jets from rigid tubes. The increased optimal vortex formation number is attributable to the transient velar kinematics exhibited by the animals. A recently developed model for instantaneous forces generated during swimming motions is implemented to demonstrate that transient velar kinematics are required in order to achieve the measured swimming trajectories. The presence of velar structures in fast-swimming jellyfish and the occurrence of similar jet-regulating mechanisms in other jet-propelled swimmers (e.g. the funnel of squid) appear to be a primary factor contributing to success of fast-swimming jetters, despite their primitive body plans

    Morphological diversity of medusan lineages constrained by animal–fluid interactions

    Get PDF
    Cnidarian medusae, commonly known as jellyfish, represent the earliest known animal taxa to achieve locomotion using muscle power. Propulsion by medusae requires the force of bell contraction to generate forward thrust. However, thrust production is limited in medusae by the primitive structure of their epitheliomuscular cells. This paper demonstrates that constraints in available locomotor muscular force result in a trade-off between high-thrust swimming via jet propulsion and high-efficiency swimming via a combined jet-paddling propulsion. This trade-off is reflected in the morphological diversity of medusae, which exhibit a range of fineness ratios (i.e. the ratio between bell height and diameter) and small body size in the high-thrust regime, and low fineness ratios and large body size in the high-efficiency regime. A quantitative model of the animal–fluid interactions that dictate this trade-off is developed and validated by comparison with morphological data collected from 660 extant medusan species ranging in size from 300 µm to over 2 m. These results demonstrate a biomechanical basis linking fluid dynamics and the evolution of medusan bell morphology. We believe these to be the organising principles for muscle-driven motility in Cnidaria

    A Wake-Based Correlate of Swimming Performance and Foraging Behavior in Seven Co-Occurring Jellyfish Species

    Get PDF
    It is generally accepted that animal–fluid interactions have shaped the evolution of animals that swim and fly. However, the functional ecological advantages associated with those adaptations are currently difficult to predict on the basis of measurements of the animal–fluid interactions. We report the identification of a robust, fluid dynamic correlate of distinct ecological functions in seven jellyfish species that represent a broad range of morphologies and foraging modes. Since the comparative study is based on properties of the vortex wake – specifically, a fluid dynamical concept called optimal vortex formation – and not on details of animal morphology or phylogeny, we propose that higher organisms can also be understood in terms of these fluid dynamic organizing principles. This enables a quantitative, physically based understanding of how alterations in the fluid dynamics of aquatic and aerial animals throughout their evolution can result in distinct ecological functions

    Flow patterns generated by oblate medusan jellyfish: field measurements and laboratory analyses

    Get PDF
    Flow patterns generated by medusan swimmers such as jellyfish are known to differ according the morphology of the various animal species. Oblate medusae have been previously observed to generate vortex ring structures during the propulsive cycle. Owing to the inherent physical coupling between locomotor and feeding structures in these animals, the dynamics of vortex ring formation must be robustly tuned to facilitate effective functioning of both systems. To understand how this is achieved, we employed dye visualization techniques on scyphomedusae (Aurelia aurita) observed swimming in their natural marine habitat. The flow created during each propulsive cycle consists of a toroidal starting vortex formed during the power swimming stroke, followed by a stopping vortex of opposite rotational sense generated during the recovery stroke. These two vortices merge in a laterally oriented vortex superstructure that induces flow both toward the subumbrellar feeding surfaces and downstream. The lateral vortex motif discovered here appears to be critical to the dual function of the medusa bell as a flow source for feeding and propulsion. Furthermore, vortices in the animal wake have a greater volume and closer spacing than predicted by prevailing models of medusan swimming. These effects are shown to be advantageous for feeding and swimming performance, and are an important consequence of vortex interactions that have been previously neglected

    Corrosion between orthodontic archwires and bracket couples

    Get PDF
    Nickel-containing orthodontic wires have been reported to cause allergic reactions in sensitive individuals. An allergic reaction is related to corrosion of the alloys and subsequent leaching of nickel ions into the oral cavity. The purpose of this study was to determine if there is a significant difference in the corrosive potential of stainless steel, NiTi and TMA wires either alone or when coupled with a stainless steel bracket.;Using potentiostatic anodic polarization, the samples were tested in 0.9% NaCl solution at room temperature with neutral pH. The breakdown potentials of stainless steel, NiTi, TMA, and the stainless steel bracket were 600 mv, 1600 mv, \u3e2000 mv, and 200 mv respectively. When coupled with a stainless steel bracket, the breakdown potential for all three of the wire types was 200 mv. The stainless steel brackets proved to be the weak ling in the galvanic couple with the three wire types and the brackets have a significantly higher corrosive potential than any of the wires themselves

    Deriving Good LDPC Convolutional Codes from LDPC Block Codes

    Full text link
    Low-density parity-check (LDPC) convolutional codes are capable of achieving excellent performance with low encoding and decoding complexity. In this paper we discuss several graph-cover-based methods for deriving families of time-invariant and time-varying LDPC convolutional codes from LDPC block codes and show how earlier proposed LDPC convolutional code constructions can be presented within this framework. Some of the constructed convolutional codes significantly outperform the underlying LDPC block codes. We investigate some possible reasons for this "convolutional gain," and we also discuss the --- mostly moderate --- decoder cost increase that is incurred by going from LDPC block to LDPC convolutional codes.Comment: Submitted to IEEE Transactions on Information Theory, April 2010; revised August 2010, revised November 2010 (essentially final version). (Besides many small changes, the first and second revised versions contain corrected entries in Tables I and II.

    Phenotypic Plasticity in Juvenile Jellyfish Medusae Facilitates Effective Animal–Fluid Interaction

    Get PDF
    Locomotion and feeding in marine animals are intimately linked to the flow dynamics created by specialized body parts. This interaction is of particular importance during ontogeny, when changes in behaviour and scale challenge the organism with shifts in fluid regimes and altered functionality. Previous studies have indicated that Scyphozoan jellyfish ontogeny accommodates the changes in fluid dynamics associated with increasing body dimensions and velocities during development. However, in addition to scale and behaviour that—to a certain degree—underlie the control of the animal, flow dynamics are also dependent on external factors such as temperature. Here, we show phenotypic plasticity in juvenile Aurelia aurita medusae, where morphogenesis is adapted to altered fluid regimes imposed by changes in ambient temperature. In particular, differential proportional growth was found to compensate for temperature-dependent changes in viscous effects, enabling the animal to use adhering water boundary layers as ‘paddles’—and thus economize tissue—at low temperatures, while switching to tissue-dominated propulsion at higher temperatures where the boundary layer thickness is insufficient to serve for paddling. This effect was predicted by a model of animal–fluid interaction and confirmed empirically by flow-field visualization and assays of propulsion efficiency

    Late Pleistocene-Holocene productivity record of benthic foraminifera from the Iceland Plateau (Core PS1246-2)

    Get PDF
    Benthic foraminiferal assemblage patterns in Core PS 1246-2 from the Iceland Plateau are examined as they relate to annual productivity and seasonal productivity changes during the Late Pleistocene glacial (23,000-11,000 yrs B.P.), Younger Dryas cool period (11,000-10,000 yrs B.P.) and Holocene (10,000-2,900 yrs B.P.). Abundance fluctuations of Cibicidoides wuellerstorji, a suspension-feeder, are used as the proxy for annual productivity, while fluctuations of the phytodetritus-exploiting species Epistoininclln r ~ i p r a E, ponides tlinzid~illisa nd GloDocossidlrliiia strbglobosa are used as the indicators of seasonal productivity. These records show seasonal productivity began to increase around 22,500 yrs B.P. and experienced three subsequent peaks in the glacial, while annual productivity increased around 16,000 yrs B.P. and shows only one peak in the glacial. The Younger Dryas shows a decrease in both seasonal and annual productivity records. Seasonal productivity in the early Holocene is much higher than during the glacial, yet appears more extreme. The Holocene record of annualproductivity continues to show a strong general increase in intensity

    The Take and Give of ESA Administration: The Need for Creative Solutions in the Face of Expanding Regulatory Proscriptions

    Get PDF
    Salmon play a significant role in the culture, economy, and ecology of Washington State. Their threatened extinctions have led to a string of listings under the federal Endangered Species Act. This Article considers our response to these listings and the relationship of that response to federal oversight. Part I discusses how the ESA will affect the actions and activities of state and local governments and the citizens they serve. Part II discusses the need for latitude on the part of the federal agencies in assessing the value of state conservation and recovery efforts. This Article concludes that the plight of our salmon and their listings under the ESA will require creative solutions by governments, businesses, and individual citizens. The federal agencies responsible for administering the ESA must in turn be allowed the flexibility to recognize and appropriately credit all state efforts in recovery and conservation, even if those efforts are prospective and voluntary

    Functional Morphology and Fluid Interactions During Early Development of the Scyphomedusa Aurelia aurita

    Get PDF
    Scyphomedusae undergo a predictable ontogenetic transition from a conserved, universal larval form to a diverse array of adult morphologies. This transition entails a change in bell morphology from a highly discontinuous ephyral form, with deep clefts separating eight discrete lappets, to a continuous solid umbrella-like adult form. We used a combination of kinematic, modeling, and flow visualization techniques to examine the function of the medusan bell throughout the developmental changes of the scyphomedusa Aurelia aurita. We found that flow around swimming ephyrae and their lappets was relatively viscous (1 < Re < 10) and, as a result, ephyral lappets were surrounded by thick, overlapping boundary layers that occluded flow through the gaps between lappets. As medusae grew, their fluid environment became increasingly influenced by inertial forces (10 < Re < 10,000) and, simultaneously, clefts between the lappets were replaced by organic tissue. Hence, although the bell undergoes a structural transition from discontinuous (lappets with gaps) to continuous (solid bell) surfaces during development, all developmental stages maintain functionally continuous paddling surfaces. This developmental pattern enables ephyrae to efficiently allocate tissue to bell diameter increase via lappet growth, while minimizing tissue allocation to inter-lappet spaces that maintain paddle function due to boundary layer overlap
    corecore