8 research outputs found

    Characterization and refinement of growth related quantitative trait loci in European sea bass (Dicentrarchus labrax) using a comparative approach

    Get PDF
    The identification of genetic markers for traits of interest for aquaculture, such as growth, is an important step for the establishment of breeding programmes. As more genomic information becomes available the possibility of applying comparative genomics to identify and refine quantitative trait locus (QTLs) and potentially identify candidate genes responsible for the QTL effect may accelerate genetic improvement in established and new aquaculture species. Here we report such an approach on growth related traits in the European sea bass (Dicentrarchus labrax), an important species for European aquaculture. A genetic map was generated with markers targeted to previously identified QTL for growth which reduced distance and improved resolution in these regions. A total of 36 significant QTLs were identified when morphometric traits were considered individually in maternal half sibs, paternal half sibs and sib-pair analysis. Twenty seven new markers targeted to the growth QTLs, obtained by comparative mapping, reduced the average distance between markers from 23.4, 9.1, and 5.8 cM in the previous map to 3.4, 2.2, and 5.2 cM, on linkage group (LG) LG4, LG6 and LG15 respectively. Lists of genes embedded in the QTL - 591 genes in LG4, 234 genes in LG6 and 450 genes in LG15 - were obtained from the European sea bass genome. Comparative mapping revealed conserved gene synteny across teleost fishes. Functional protein association network analysis with the gene products of the 3 linkage groups revealed a large global association network including 42 gene products. Strikingly the association network was populated with genes of known biological importance for growth and body weight in terrestrial farm animals, such as elements of the signaling pathways for Jak-STAT, MAPK, adipocytokine and insulin, growth hormone, IGFI and II. This study demonstrates the feasibility of a comparative genomics combined with functional gene annotation to refine the resolution of QTL and the establishment of hypothesis to accelerate discovery of putative responsible genes.Statement of relevance: This study demonstrates the feasibility of a comparative genomics approach, combined with functional annotation to refine the resolution of QTL and establishment of hypothesis to accelerate discovery of candidate genes. As production of genomic data is becoming more accessible, the implementation of this strategy will rapidly and efficiently provide the tools required for genetic selection in new candidate aquaculture species. (C) 2016 Elsevier B.V. All rights reserved

    Quantitative Trait Loci Involved in Sex Determination and Body Growth in the Gilthead Sea Bream (Sparus aurata L.) through Targeted Genome Scan

    Get PDF
    Among vertebrates, teleost fish exhibit a considerably wide range of sex determination patterns that may be influenced by extrinsic parameters. However even for model fish species like the zebrafish Danio rerio the precise mechanisms involved in primary sex determination have not been studied extensively. The zebrafish, a gonochoristic species, is lacking discernible sex chromosomes and the sex of juvenile fish is difficult to determine. Sequential protandrous hermaphrodite species provide distinct determination of the gender and allow studying the sex determination process by looking at the mechanism of sex reversal. This is the first attempt to understand the genetic basis of phenotypic variation for sex determination and body weight in a sequential protandrous hermaphrodite species, the gilthead sea bream (Sparus aurata). This work demonstrates a fast and efficient strategy for Quantitative Trait Loci (QTL) detection in the gilthead sea bream, a non-model but target hermaphrodite fish species. Therefore a comparative mapping approach was performed to query syntenies against two other Perciformes, the European sea bass (Dicentrarchus labrax), a gonochoristic species and the Asian sea bass (Lates calcarifer) a protandrous hermaphrodite. In this manner two significant QTLs, one QTL affecting both body weight and sex and one QTL affecting sex, were detected on the same linkage group. The co-segregation of the two QTLs provides a genomic base to the observed genetic correlation between these two traits in sea bream as well as in other teleosts. The identification of QTLs linked to sex reversal and growth, will contribute significantly to a better understanding of the complex nature of sex determination in S. aurata where most individuals reverse to the female sex at the age of two years through development and maturation of the ovarian portion of the gonad and regression of the testicular area. [Genomic sequences reported in this manuscript have been submitted to GenBank under accession numbers HQ021443–HQ021749.

    Stock Discrimination of Gilthead Seabream (<i>Sparus aurata</i> Linnaeus, 1758) through the Examination of Otolith Morphology and Genetic Structure

    No full text
    Reliable stock identification constitutes an integral component of effective fishery management. Current methods for the identification of putative stock units comprise the analysis of both phenotypic and genetic variability. The present study examined the spatial variation in otolith morphology (shape and asymmetry) and genetic composition of 395 wild-caught Gilthead seabream (Sparus aurata) specimens, collected from the Aegean and Ionian Seas (eastern Mediterranean) between 2014–2018. The degree of scale regeneration (SRD, % of regenerated scales) was used as an indicator to assess the potential presence of aquaculture escapees in the wild-caught samples. Otolith shape and asymmetry analyses showed a phenotypic discrimination between northwestern Aegean and Ionian Gilthead seabream populations. Genetic analyses of nine microsatellite markers revealed higher levels of genetic variation in the wild compared with samples obtained from aquaculture farms. Despite the absence of genetic structure among the wild-caught seabream populations, a low but statistically significant genetic differentiation was found between reared fish and fish collected in the field. The SRD was considered effective in detecting the presence of aquaculture escapees that may have escaped in either early or late rearing phases

    Genetic Variability, Population Structure, and Relatedness Analysis of Meagre Stocks as an Informative Basis for New Breeding Schemes

    No full text
    This study evaluates the genetic diversity of different meagre broodstocks sampled in Greece. A multiplex of twelve microsatellite markers was used to genotype 946 fish from eleven stocks and batches used for broodstock selection, and the genetic data was used to calculate genetic population parameters as well as to investigate the genetic differentiation between stocks. The results from a relatedness analysis were used as the guiding lines for a fine-tuned and overall evaluation of the genetic distance between stocks, and the choice of candidate breeders from some of them. The approach implemented in this study uses well-established population genetics methods to evaluate the selection of breeder candidates in aquaculture commercial conditions utilizing a descriptive genetic data set based on microsatellite analyses, and to outline an efficient methodology for establishing the basis of new breeding schemes

    Insights in Pharmaceutical Pollution: The Prospective Role of eDNA Metabarcoding

    No full text
    Environmental pollution is a growing threat to natural ecosystems and one of the world’s most pressing concerns. The increasing worldwide use of pharmaceuticals has elevated their status as significant emerging contaminants. Pharmaceuticals enter aquatic environments through multiple pathways related to anthropogenic activity. Their high consumption, insufficient waste treatment, and the incapacity of organisms to completely metabolize them contribute to their accumulation in aquatic environments, posing a threat to all life forms. Various analytical methods have been used to quantify pharmaceuticals. Biotechnology advancements based on next-generation sequencing (NGS) techniques, like eDNA metabarcoding, have enabled the development of new methods for assessing and monitoring the ecotoxicological effects of pharmaceuticals. eDNA metabarcoding is a valuable biomonitoring tool for pharmaceutical pollution because it (a) provides an efficient method to assess and predict pollution status, (b) identifies pollution sources, (c) tracks changes in pharmaceutical pollution levels over time, (d) assesses the ecological impact of pharmaceutical pollution, (e) helps prioritize cleanup and mitigation efforts, and (f) offers insights into the diversity and composition of microbial and other bioindicator communities. This review highlights the issue of aquatic pharmaceutical pollution while emphasizing the importance of using modern NGS-based biomonitoring actions to assess its environmental effects more consistently and effectively

    Detection of Wolbachia Infections in Natural and Laboratory Populations of the Moroccan Hessian Fly, Mayetiola destructor (Say)

    No full text
    Mayetiola destructor (Hessian fly) is a destructive pest of wheat in several parts of the world. Here, we investigated the presence of reproductive symbionts and the effect of the geographical location on the bacterial community associated to adult Hessian flies derived from four major wheat producing areas in Morocco. Using specific 16S rDNA PCR assay, Wolbachia infection was observed in 3% of the natural populations and 10% of the laboratory population. High throughput sequencing of V3-V4 region of the bacterial 16S rRNA gene revealed that the microbiota of adult Hessian flies was significantly influenced by their native regions. A total of 6 phyla, 10 classes and 79 genera were obtained from all the samples. Confirming the screening results, Wolbachia was identified as well in the natural Hessian flies. Phylogenetic analysis using the sequences obtained in this study indicated that there is one Wolbachia strain belonging to supergroup A. To our knowledge, this is the first report of Wolbachia in Hessian fly populations. The observed low abundance of Wolbachia most likely does not indicate induction of reproductive incompatibility. Yet, this infection may give a new insight into the use of Wolbachia for the fight against Hessian fly populations

    Characterization of the Bacterial Profile from Natural and Laboratory <i>Glossina</i> Populations

    No full text
    Tsetse flies (Glossina spp.; Diptera: Glossinidae) are viviparous flies that feed on blood and are found exclusively in sub-Saharan Africa. They are the only cyclic vectors of African trypanosomes, responsible for human African trypanosomiasis (HAT) and animal African trypanosomiasis (AAT). In this study, we employed high throughput sequencing of the 16S rRNA gene to unravel the diversity of symbiotic bacteria in five wild and three laboratory populations of tsetse species (Glossina pallidipes, G. morsitans, G. swynnertoni, and G. austeni). The aim was to assess the dynamics of bacterial diversity both within each laboratory and wild population in relation to the developmental stage, insect age, gender, and location. Our results indicated that the bacterial communities associated with the four studied Glossina species were significantly influenced by their region of origin, with wild samples being more diverse compared to the laboratory samples. We also observed that the larval microbiota was significantly different than the adults. Furthermore, the sex and the species did not significantly influence the formation of the bacterial profile of the laboratory colonies once these populations were kept under the same rearing conditions. In addition, Wigglesworthia, Acinetobacter, and Sodalis were the most abundant bacterial genera in all the samples, while Wolbachia was significantly abundant in G. morsitans compared to the other studied species. The operational taxonomic unit (OTU) co-occurrence network for each location (VVBD insectary, Doma, Makao, and Msubugwe) indicated a high variability between G. pallidipes and the other species in terms of the number of mutual exclusion and copresence interactions. In particular, some bacterial genera, like Wigglesworthia and Sodalis, with high relative abundance, were also characterized by a high degree of interactions

    AQUAFIRST: 2nd Periodic Activity Report

    Get PDF
    Project n° 513692 Combined genetic and functional genomic approaches for stress and disease resistance marker assisted selection in fish and shellfish: AQUAFIRST The overall aims of the project is to identify, in sea bream, sea bass, oyster, and rainbow trout, genes of which expression is associated with disease and stress resistance and, from this information, to develop genetic approaches that allow characterisation of genetic markers for marker-assisted selective breeding of disease and/or stress resistant individuals. For such project, the following main objectives will have to be reached: Characterisation in sea bream, sea bass, trout and oyster, stress- and disease-responsive genes as potential candidate gene markers for desirable traits; Seeking associations between (i) variations in response to stress and resistance to pathogen and (ii) selected candidates genes and microsatellites markers by segregation analysis in appropriate families (QTL analysis); Mapping of these genes in linkage and gene maps. In order to characterize disease and stress-responsive genes in seabream, sea bass, trout and oyster, a functional genomic using microarray technology have been developed. During the second year of the project, all planned cDNA collections have been obtained and sequenced which allow the project, y combining his genomic resources with that of Marine Genomic Europe NoE to establish a database containing a large collections of EST for seabass, seabream, oyster and rainbow trout. These cDNA will be spotted on microarrays for seabream, seabass and oyster. For trout, this collection allowed the design of synthetic oligonucleotides which have been spotted in microarrays. All partners have been trained to analysis of microarray data and in vivo stress/pathogen exposure experiments have been carried out and validated. Gene profile analysis will be performed during the first part of the 3rd year. During the second year of the project, we have also carried on several tasks devoted to characterization of genetic markers associated with stress or disease resistance. This includes search for SNP in stress or disease-resistant genes, production of relevant biological material (oyster and trout) on which a QTL analysis would be developed, development of new genetic markers (microsatellites) which would be later used for genotyping individuals in QTL protocols, construction of a radiation hybrid panel for sea bass
    corecore