46 research outputs found
Shaken Baby Syndrome: Magnetic Resonance Imaging Features in Abusive Head Trauma
In the context of child abuse spectrum, abusive head trauma (AHT) represents the leading cause of fatal head injuries in children less than 2 years of age. Immature brain is characterized by high water content, partially myelinated neurons, and prominent subarachnoid space, thus being susceptible of devastating damage as consequence of acceleration–deceleration and rotational forces developed by violent shaking mechanism. Diagnosis of AHT is not straightforward and represents a medical, forensic, and social challenge, based on a multidisciplinary approach. Beside a detailed anamnesis, neuroimaging is essential to identify signs suggestive of AHT, often in absence of external detectable lesions. Magnetic resonance imaging (MRI) represents the radiation-free modality of choice to investigate the most typical findings in AHT, such as subdural hematoma, retinal hemorrhage, and hypoxic-ischemic damage and it also allows to detect more subtle signs as parenchymal lacerations, cranio-cervical junction, and spinal injuries. This paper is intended to review the main MRI findings of AHT in the central nervous system of infants, with a specific focus on both hemorrhagic and non-hemorrhagic injuries caused by the pathological mechanisms of shaking. Furthermore, this review provides a brief overview about the most appropriate and feasible MRI protocol to help neuroradiologists identifying AHT in clinical practice
White matter alterations in drug-naĂŻve children with Tourette syndrome and obsessive-compulsive disorder
Tourette syndrome (TS) and early-onset obsessive-compulsive disorder (OCD) are frequently associated and conceptualized as distinct phenotypes of a common disease spectrum. However, the nature of their relationship is still largely unknown on a pathophysiological level. In this study, early structural white matter (WM) changes investigated through diffusion tensor imaging (DTI) were compared across four groups of drug-naive children: TS-pure (n = 16), TS+OCD (n = 14), OCD (n = 10), and 11 age-matched controls. We analyzed five WM tracts of interest, i.e., cortico-spinal tract (CST), anterior thalamic radiations (ATR), inferior longitudinal fasciculus (ILF), corpus callosum (CC), and cingulum and evaluated correlations of DTI changes to symptom severity. Compared to controls, TS-pure and TS+OCD showed a comparable pattern of increased fractional anisotropy (FA) in CST, ATR, ILF and CC, with FA changes displaying negative correlation to tic severity. Conversely, in OCD, FA decreased in all WM tracts (except for the cingulum) compared to controls and negatively correlated to symptoms. We demonstrate different early WM microstructural alterations in children with TS-pure/TS+OCD as opposed to OCD. Our findings support the conceptualization of TS+OCD as a subtype of TS while suggesting that OCD is characterized by independent pathophysiological mechanisms affecting WM development
Neuroimaging markers of Alice in Wonderland syndrome in patients with migraine with aura
BackgroundThe Alice in Wonderland syndrome (AIWS) is a transient neurological disturbance characterized by sensory distortions most frequently associated with migraine in adults. Some lines of evidence suggest that AIWS and migraine might share common pathophysiological mechanisms, therefore we set out to investigate the common and distinct neurophysiological alterations associated with these conditions in migraineurs.MethodsWe conducted a case–control study acquiring resting-state fMRI data from 12 migraine patients with AIWS, 12 patients with migraine with typical aura (MA) and 24 age-matched healthy controls (HC). We then compared the interictal thalamic seed-to-voxel and ROI-to-ROI cortico-cortical resting-state functional connectivity between the 3 groups.ResultsWe found a common pattern of altered thalamic connectivity in MA and AIWS, compared to HC, with more profound and diffuse alterations observed in AIWS. The ROI-to-ROI functional connectivity analysis highlighted an increased connectivity between a lateral occipital region corresponding to area V3 and the posterior part of the superior temporal sulcus (STS) in AIWS, compared to both MA and HC.ConclusionThe posterior STS is a multisensory integration area, while area V3 is considered the starting point of the cortical spreading depression (CSD), the neural correlate of migraine aura. This interictal hyperconnectivity might increase the probability of the CSD to directly diffuse to the posterior STS or deactivating it, causing the AIWS symptoms during the ictal phase. Taken together, these results suggest that AIWS in migraineurs might be a form of complex migraine aura, characterized by the involvement of associative and multisensory integration areas
Functional and Structural Brain Plasticity Enhanced by Motor and Cognitive Rehabilitation in Multiple Sclerosis
Rehabilitation is recognized to be important in ameliorating motor and cognitive functions, reducing disease burden, and improving quality of life in patients with multiple sclerosis (MS). In this systematic review, we summarize the existing evidences that motor and cognitive rehabilitation may enhance functional and structural brain plasticity in patients with MS, as assessed by means of the most advanced neuroimaging techniques, including diffusion tensor imaging and task-related and resting-state functional magnetic resonance imaging (MRI). In most cases, the rehabilitation program was based on computer-assisted/video game exercises performed in either an outpatient or home setting. Despite their heterogeneity, all the included studies describe changes in white matter microarchitecture, in task-related activation, and/or in functional connectivity following both task-oriented and selective training. When explored, relevant correlation between improved function and MRI-detected brain changes was often found, supporting the hypothesis that training-induced brain plasticity is specifically linked to the trained domain. Small sample sizes, lack of randomization and/or an active control group, as well as missed relationship between MRI-detected changes and clinical performance, are the major drawbacks of the selected studies. Knowledge gaps in this field of research are also discussed to provide a framework for future investigations
Neuroimaging techniques to assess inflammation in multiple sclerosis
Multiple Sclerosis (MS) is a chronic neurological disease that represents a leading cause of disability in young adults and is characterized by inflammation and degeneration of both white matter (WM) and gray matter (GM). Defining the presence or absence of inflammation on individual basis is a key point in choosing the therapy and monitoring the treatment response. Magnetic resonance imaging (MRI) represents the most sensitive non-invasive tool to monitor inflammation in the clinical practice. Indeed, in the early phase of inflammation MRI detects new lesions as extrusion of gadolinium contrast agents across the altered blood-brain-barrier (BBB). The occurrence of MRI lesions is used to confirm diagnosis and has been validated as surrogate marker of relapse to monitor response to treatments. However, focal gadolinium-enhancing lesions represent only an aspect of neuroinflammation. Recent studies have suggested the presence of a widespread inflammation of the central nervous system (CNS), which is mainly related to microglial cells activation occurring both at the edge of chronic focal lesions and throughout the normal-appearing brain tissue. New imaging techniques have been developed to study diffuse inflammation taking place outside the focal plaques. The scope of this review is to examine the various neuroimaging techniques and those biophysical quantities that can be non-invasively detected to enlighten the different aspects of neuroinflammation. Some techniques are commonly used in the clinical practice, while others are used in the research field to better understand the pathophysiological mechanisms of the disease and the role of inflammation
Advanced MRI Techniques: Diagnosis and Follow-Up of Multiple Sclerosis
Brain and spinal cord imaging plays a pivotal role in aiding clinicians with the diagnosis and monitoring of multiple sclerosis. Nevertheless, the significance of magnetic resonance imaging in MS extends beyond its clinical utility. Advanced imaging modalities have facilitated the in vivo detection of various components of MS pathogenesis, and, in recent years, MRI biomarkers have been utilized to assess the response of patients with relapsing–remitting MS to the available treatments. Similarly, MRI indicators of neurodegeneration demonstrate potential as primary and secondary endpoints in clinical trials targeting progressive phenotypes. This review aims to provide an overview of the latest advancements in brain and spinal cord neuroimaging in MS
Alice in Wonderland syndrome: a lesion mapping study
Background and purpose: Alice in Wonderland syndrome (AIWS) is a rare neurological disorder, characterized by an erroneous perception of the body schema or surrounding space. It may be caused by a variety of neurological disorders, but to date, there is no agreement on which brain areas are affected. The aim of this study was to identify brain areas involved in AIWS. Methods: We conducted a literature search for AIWS cases following brain lesions. Patients were classified according to their symptoms as type A (somesthetic), type B (visual), or type C (somesthetic and visual). Using a lesion mapping approach, lesions were mapped onto a standard brain template and sites of overlap were identified. Results: Of 30 lesions, maximum spatial overlap was present in six cases. Local maxima were identified in the right occipital lobe, specifically in the extrastriate visual cortices and white matter tracts, including the ventral occipital fasciculus, optic tract, and inferior fronto-occipital fasciculus. Overlap was primarily due to type B patients (the most prevalent type, n = 22), who shared an occipital site of brain damage. Type A (n = 5) and C patients (n = 3) were rarer, with lesions disparately located in the right hemisphere (thalamus, insula, frontal lobe, hippocampal/parahippocampal cortex). Conclusions: Lesion-associated AIWS in type B patients could be related to brain damage in visual pathways located preferentially, but not exclusively, in the right hemisphere. Conversely, the lesion location disparity in cases with somesthetic symptoms suggests underlying structural/functional disconnections requiring further evaluation
Oral Dalfampridine Improves Standing Balance Detected at Static Posturography in Multiple Sclerosis
We report a 14-week post-marketing experience on 20 patients with multiple sclerosis (MS) who started prolonged-release (PR) oral dalfampridine 10 mg twice daily according to European Medicine Agency criteria. They underwent serial static posturography assessments and the dizziness handicap inventory (DHI) to investigate whether PR dalfampridine could impact standing balance and self-reported perception of balance. The incidence of accidental falls per person per month was also recorded throughout the study. Eight (40%) patients, who had a relevant improvement in walking speed, were defined as treatment responders. They showed a significant improvement of standing balance (with respect to pretreatment assessment) when contrasted with 12 (60%) nonresponders (F[4,15] = 3.959, P=0.027). No significant changes in DHI score, as well as in its functional, physical, and emotional subscales, were found in both responders and nonresponders at the end of study (all P values are ≥0.2). Treatment response did not affect the incidence of accidental falls. Future studies based on larger sample sizes, and with longer followup, are required to confirm the beneficial effect of PR dalfampridine on standing balance
Recommended from our members
Beyond focal cortical lesions in MS: An in vivo quantitative and spatial imaging study at 7T.
OBJECTIVES: Using quantitative T2* 7-tesla (7T) MRI as a marker of demyelination and iron loss, we investigated, in patients with relapsing-remitting multiple sclerosis (RRMS) and secondary progressive multiple sclerosis (SPMS), spatial and tissue intrinsic characteristics of cortical lesion(s) (CL) types, and structural integrity of perilesional normal-appearing cortical gray matter (NACGM) as a function of distance from lesions. METHODS: Patients with MS (18 RRMS, 11 SPMS), showing at least 2 CL, underwent 7T T2* imaging to obtain (1) magnitude images for segmenting focal intracortical lesion(s) (ICL) and leukocortical lesion(s) (LCL), and (2) cortical T2* maps. Anatomical scans were collected at 3T for cortical surface reconstruction using FreeSurfer. Seventeen age-matched healthy participants served as controls. RESULTS: ICL were predominantly located in sulci of frontal, parietal, and cingulate cortex; LCL distribution was more random. In MS, T2* was higher in both ICL and LCL, indicating myelin and iron loss, than in NACGM (p < 0.00003) irrespective of CL subtype and MS phenotype. T2* was increased in perilesional cortex, tapering away from CL toward NACGM, the wider changes being for LCL in SPMS. NACGM T2* was higher in SPMS relative to RRMS (p = 0.006) and healthy cortex (p = 0.02). CONCLUSIONS: CL had the same degree of demyelination and iron loss regardless of lesion subtype and disease stage. Cortical damage expanded beyond visible CL, close to lesions in RRMS, and more diffusely in SPMS. Evaluation of NACGM integrity, beyond focal CL, could represent a surrogate marker of MS progression