263 research outputs found

    MicroRNAs in Postischemic Vascular Repair

    Get PDF
    The term angiogenesis describes the growth of endothelial sprouts from preexisting postcapillary venules. More recently, this term has been used to generally indicate the growth and remodeling process of the primitive vascular network into a complex network during development. In adulthood, angiogenesis is activated as a reparative process during wound healing and following ischemia, and it plays a key role in tumor growth and metastasis as well as in inflammatory diseases and diabetic retinopathy. MicroRNAs (miRNAs) are endogenous, small, noncoding RNAs that negatively control gene expression of target mRNAs. In this paper, we aim at describing the role of miRNAs in postischemic angiogenesis. First, we will describe the regulation and the expression of miRNAs in endothelial cells. Then, we will analyze the role of miRNAs in postischemic vascular repair. Finally, we will discuss the role of circulating miRNAs as potential biomarkers in ischemic diseases

    Extraembryonic Origin of Circulating Endothelial Cells

    Get PDF
    Circulating endothelial cells (CEC) are contained in the bone marrow and peripheral blood of adult humans and participate to the revascularization of ischemic tissues. These cells represent attractive targets for cell or gene therapy aimed at improving ischemic revascularization or inhibition of tumor angiogenesis. The embryonic origin of CEC has not been addressed previously. Here we use quail-chick chimeras to study CEC origin and participation to the developing vasculature. CEC are traced with different markers, in particular the QH1 antibody recognizing only quail endothelial cells. Using yolk-sac chimeras, where quail embryos are grafted onto chick yolk sacs and vice-versa, we show that CEC are generated in the yolk sac. These cells are mobilized during wound healing, demonstrating their participation to angiogenic repair processes. Furthermore, we found that the allantois is also able to give rise to CEC in situ. In contrast to the yolk sac and allantois, the embryo proper does not produce CEC. Our results show that CEC exclusively originate from extra-embryonic territories made with splanchnopleural mesoderm and endoderm, while definitive hematopoietic stem cells and endothelial cells are of intra-embryonic origin

    Cardiovascular actions of neurotrophins

    Get PDF
    Neurotrophins were christened in consideration of their actions on the nervous system and, for a long time, they were the exclusive interest of neuroscientists. However, more recently, this family of proteins has been shown to possess essential cardiovascular functions. During cardiovascular development, neurotrophins and their receptors are essential factors in the formation of the heart and critical regulator of vascular development. Postnatally, neurotrophins control the survival of endothelial cells, vascular smooth muscle cells, and cardiomyocytes and regulate angiogenesis and vasculogenesis, by autocrine and paracrine mechanisms. Recent studies suggest the capacity of neurotrophins, via their tropomyosin-kinase receptors, to promote therapeutic neovascularization in animal models of hindlimb ischemia. Conversely, the neurotrophin low-affinity p75(NTR) receptor induces apoptosis of endothelial cells and vascular smooth muscle cells and impairs angiogenesis. Finally, nerve growth factor looks particularly promising in treating microvascular complications of diabetes or reducing cardiomyocyte apoptosis in the infarcted heart. These seminal discoveries have fuelled basic and translational research and thus opened a new field of investigation in cardiovascular medicine and therapeutics. Here, we review recent progress on the molecular signaling and roles played by neurotrophins in cardiovascular development, function, and pathology, and we discuss therapeutic potential of strategies based on neurotrophin manipulation

    MicroRNA-503 and the extended microRNA-16 family in angiogenesis

    Get PDF
    MicroRNAs (miRs) are post-transcriptional inhibitory regulators of gene expression acting by direct binding to complementary messenger RNA (mRNA) transcripts. Recent studies have demonstrated that miRs are crucial determinants of endothelial cell behavior and angiogenesis. We have provided evidence of the prominent role of miR-503 in impairment of postischemic reparative angiogenesis in the setting of diabetes. Because miR-503 belongs to the miR-16 extended family of miRs, in this review, we describe the cardiovascular functions of miR-503 and other members of the miR-16 family and their impact on angiogenesis

    Cardiovascular actions of neurotrophins

    Get PDF
    Using methods from ergodic theory along with properties of the Furstenberg measure we obtain conditions under which certain classes of plane self-affine sets have Hausdorff or box-counting dimensions equal to their affinity dimension. We exhibit some new specific classes of self-affine sets for which these dimensions are equal.Comment: 18 pages, 2 figure

    Apricot melanoidins prevent oxidative endothelial cell death by counteracting mitochondrial oxidation and membrane depolarization

    Get PDF
    The cardiovascular benefits associated with diets rich in fruit and vegetables are thought to be due to phytochemicals contained in fresh plant material. However, whether processed plant foods provide the same benefits as unprocessed ones is an open question. Melanoidins from heat-processed apricots were isolated and their presence confirmed by colorimetric analysis and browning index. Oxidative injury of endothelial cells (ECs) is the key step for the onset and progression of cardiovascular diseases (CVD), therefore the potential protective effect of apricot melanoidins on hydrogen peroxide-induced oxidative mitochondrial damage and cell death was explored in human ECs. The redox state of cytoplasmic and mitochondrial compartments was detected by using the redox-sensitive, fluorescent protein (roGFP), while the mitochondrial membrane potential (MMP) was assessed with the fluorescent dye, JC-1. ECs exposure to hydrogen peroxide, dose-dependently induced mitochondrial and cytoplasmic oxidation. Additionally detected hydrogen peroxide-induced phenomena were MMP dissipation and ECs death. Pretreatment of ECs with apricot melanoidins, significantly counteracted and ultimately abolished hydrogen peroxide-induced intracellular oxidation, mitochondrial depolarization and cell death. In this regard, our current results clearly indicate that melanoidins derived from heat-processed apricots, protect human ECs against oxidative stress

    Exosomes: Basic biology and technological advancements suggesting their potential as ischemic heart disease therapeutics

    Get PDF
    Exosomes are small nano-sized vesicles that deliver biologically active RNA molecules and proteins to recipient cells through binding, fusion or endocytosis. There is emerging evidence that endogenous exosomes released by cardiovascular cells and progenitor cells impact cell survival and proliferation, thus regulating angiogenesis, cardiac protection and repair. These cardioprotective and regenerative traits have the potential to translate in to novel therapeutic options for post-ischaemic cardiac regeneration, thus potentially delaying the progression to ischaemic heart failure. Cellular stressors influence exosomes' secretion and the molecular composition of the exosome cargo, thus impacting on the above processes. Evidences are emerging that loading of proteins and RNAs in the exosomes cargos can be manipulated. Similarly, manipulation of exosomes surface proteins' expression to target exosomes to specific cells and tissues is doable. In addition, nature-inspired synthetic exosomes can be assembled to deliver specific clues to the recipient cells, including proliferative and differentiation stimuli, or shed paracrine signals enabling to reconstructing the heart homeostatic micro-environment. This review will describe exosome biogenesis and emerging evidence of exosome-mediated regenerative cell-to-cell communications and will conclude discussing possibilities of using exosomes to treat ischemic heart disease

    Rescue of Impaired Angiogenesis in Spontaneously Hypertensive Rats by Intramuscular Human Tissue Kallikrein Gene Transfer

    Get PDF
    Angiogenesis represents a compensatory response targeted to preserve the integrity of tissues subjected to ischemia. The aim of the present study was to examine whether reparative angiogenesis is impaired in spontaneously hypertensive rats (SHR), as a function of progression of hypertension. In addition, the potential of gene therapy with human tissue kallikrein (HK) in revascularization was challenged in SHR and normotensive Wistar-Kyoto rats (WKY) that underwent excision of the left femoral artery. Expression of vascular endothelial growth factor and HK was upregulated in ischemic hindlimb of WKY but not of SHR. Capillary density was increased in ischemic adductor muscle of WKY (from 266±20 to 633±73 capillaries/mm 2 at 28 days, P <0.001), whereas it remained unchanged in SHR (from 276±20 to 354±48 capillaries/mm 2 , P =NS), thus compromising perfusion recovery as indicated by reduced plantar blood flow ratio (0.61±0.08 versus 0.92±0.07 in WKY at 28 days, P <0.05). In separate experiments, saline or 5×10 9 pfu adenovirus containing the HK gene (Ad.CMV-cHK) or the β-galactosidase gene (Ad.CMV-LacZ) was injected intramuscularly at 7 days after the induction of ischemia. Ad.CMV-cHK augmented capillary density and accelerated hemodynamic recovery in both strains, but these effects were more pronounced in SHR ( P <0.01). Our results indicate that native angiogenic response to ischemia is impaired in SHR, possibly as a result of defective modulation of endothelial cell mitogens. Supplementation with kallikrein, one of the growth factors found to be deficient in SHR, restores physiological angiogenic response utilitarian for tissue healing. Our discoveries may have important implications in vascular medicine for therapeutic benefit

    Platelet lysate gel and endothelial progenitors stimulate microvascular network formation in vitro: tissue engineering implications

    Get PDF
    Revascularisation is a key step for tissue regeneration and complete organ engineering. We describe the generation of human platelet lysate gel (hPLG), an extracellular matrix preparation from human platelets able to support the proliferation of endothelial colony forming cells (ECFCs) in 2D cultures and the formation of a complete microvascular network in vitro in 3D cultures. Existing extracellular matrix preparations require addition of high concentrations of recombinant growth factors and allow only limited formation of capillary-like structures. Additional advantages of our approach over existing extracellular matrices are the absence of any animal product in the composition hPLG and the possibility of obtaining hPLG from patients to generate homologous scaffolds for re-implantation. This discovery has the potential to accelerate the development of regenerative medicine applications based on implantation of microvascular networks expanded ex vivo or the generation of fully vascularised organs
    corecore