12 research outputs found

    Cracking analysis of plane stress reinforced concrete structures

    Get PDF
    This article presents the numerical analysis' results of reinforced concrete elements subjected to plane stress in early cracking stage. The elements are modelled by a concrete two-dimensional matrix, discrete reinforcement bars and bond-slip elements. The aim of this study is to investigate the behaviour of RC structures before and after the formation of the first cracks to understand the influence on the crack spacing and width of bar orientation with respect to the crack direction, bar spacing and diameter and presence of shear stresses on the crack. Discrete crack non-linear analysis of elements with reinforcement both orthogonal and skew to the crack directions are performed. The interaction between concrete and steel is ensured by a non-linear bond slip law at the interfaces between the two materials. The crack spacing obtained numerically are compared with the ones calculated using different design codes. The analysis of models with different reinforcement geometries allows individuating and discussing the main factors governing two-dimensional plane stress concrete cracking behaviour

    Structural Health Monitoring Issues Using Inclinometers on Prestressed Concrete Girder Bridge Decks

    Get PDF
    In the last decades, assessment and rehabilitation of the existing built environment constitute one of the major challenges for engineers, practitioners and code-makers all over the world. Aging, deterioration processes, lack of or improper maintenance, and increasing occurrence of extreme events have led to the need of more efficient methods for the safety assessment and retrofitting/rehabilitation of existing concrete structures like bridges. New approaches deriving from research should be able to provide solutions devoted to reduce and/or avoid the necessity of interventions, verifying the safety conditions for human life and performances for serviceability on aged infrastructures. Structural Health Monitoring (SHM) of existing bridges has become a key issue in all western world as most of the infrastructures of each Country are reaching the end of their design life. SHM can be divided classically in two approaches: static and dynamic. Static SHM is based on the measure of displacements and their derivatives like rotations or strains regardless of the dynamic behaviour of the structure. Clinometers are among the most used devices to measure angles on structures; they can provide high accuracy when used in static mode as advanced techniques of signal processing can be used to reduce the noise of the signal working on acquisitions that can last several seconds to provide one single accurate measure of angle. Nevertheless, many issues one the affidability and the correct use of measures done with clinometers have to be addressed to achieve a trustworthy SHM using such devices. In this paper the most relevant issues related to the f.e.m. modelling of a bridge deck in view of the use of clinometers for SHM are presented providing explanation using a test case bridge that has been under continuous investigation for many months. A brief explanation of the process for data cleaning and interpretation is also given, stressing out the limits of the technology and the possible outcomes

    Autogenous Crack Control during Construction Phases of MOSE Venice Dams

    Get PDF
    The design of concrete structures exposed to severe environmental attack, like in marine environment, requires serious attention for concrete durability. Early age cracking due to autogenous deformations can be detrimental to the performance of tidal structures. The study of the structural effects of hydration heat and rheological behaviour of a set of huge concrete structures of the Mobile Venice Dams known with the MOSE acronym (Experimental Electromechanical Module) is presented in this paper. Together with other measures such as coastal reinforcement, the raising of quaysides, and the paving and improvement of the lagoon, MOSE is designed to protect Venice and the lagoon from tides of up to 3 meters. Construction began simultaneously in 2003 at all three lagoon inlets, and the project has been completed in 2014. Floods have caused damage since ancient times and have become more frequent and intense as a result of the combined effect of eustatism (a rise in sea level) and subsidence (a drop in land level) caused by natural and man-induced phenomena. Nowadays, towns and villages in the lagoon are about 23 cm lower with respect to the water level than at the beginning of the 1900s. Each year, floods can cause serious problems for the inhabitants as well as deterioration of architecture, urban structures and the ecosystem. Over the entire lagoon area, there is also a constant risk of a catastrophic event such as that of 4 November 1966, when a tide of 194 cm submerged Venice, Chioggia and the other built-up areas

    Influence of Slenderness on the Evaluation of Epistemic Uncertainty Related to Non-Linear Numerical Analysis of RC Columns

    Get PDF
    This investigation is devoted to quantify the epistemic uncertainty related to the nonlinear analysis of reinforced concrete columns characterized by high slenderness using numerical codes. The adoption of refined numerical tools, which are able to consider both mechanical and geometric non linearities, implies to perform assumptions and approximations with respect to reality. Whit reference to reliability analysis, these simplifications lead, inevitably, to additional uncertainties which are of epistemic nature. In fact, these uncertainties may be reduced by the engineers/analysts by increasing the level of refinement of the numerical model and/or increasing knowledge about parameters associated to material models. However, also numerical model established by expert engineers/analysts are affected by this kind of epistemic uncertainty. Accepting that the level of uncertainty associated to the experimental tests set are minimized, the epistemic uncertainty associated to non-linear numerical simulations can be quantified characterizing the model uncertainty random variable comparing the outcomes of numerical results to the associated experimental ones. The present investigation proposes the quantification of the model uncertainty related to non-linear numerical simulations of slender RC columns. A total number of 40 experimental results known from literature are herein selected in coherence with current Eurocodes specifications. The experiments are reproduced adopting non-linear numerical analysis differentiating between several modelling hypotheses (i.e., numerical code; materials models). The comparison between experimental and numerical results is adopted to characterize the most suitable probabilistic model for the model uncertainty random variable associated to non-linear numerical simulations of RC columns subjected to significant slenderness. The outcomes of the research are useful to provide background to the characterization of partial safety factor for model uncertainty in non-linear numerical analysis using the approach of the global resistance format for safety verifications

    Prediction of Cracking Induced by Indirect Actions in RC Structures

    Get PDF
    Cracking of concrete plays a key role in reinforced concrete (RC) structures design, especially in serviceability conditions. A variety of reasons contribute to develop cracking and its presence in concrete structures is to be considered as almost unavoidable. Therefore, a good control of the phenomenon in order to provide durability is required. Cracking development is due to tensile stresses that arise in concrete structures as a result of the action of direct external loads or restrained endogenous deformations. This paper focuses on cracking induced by indirect actions. In fact, there is very limited literature regarding this particular phenomenon if compared to its high incidence in the construction practice. As a consequence, the correct prediction of the crack opening, width and position when structures are subjected to imposed deformations, such as massive castings or other highly restrained structures, becomes a compelling task, not so much for the structural capacity, as for their durability. However, this is only partially addressed by commonly used design methods, which are usually intended for direct actions. A set of non-linear analysis on simple tie models is performed using the Finite Element Method in order to study the cracking process under imposed deformations. Different concrete grades have been considered and analysed. The results of this study have been compared with the provisions of the most common codes

    Seismic reliability-based design of hardening structures equipped with double sliding devices

    Get PDF
    This study deals with seismic reliability-based design (SRBD) relationships in terms of beha-vior factors and displacement demands for hardening structures equipped with double fric-tion pendulum system (DFPS) bearings. An equivalent 3dof system having a hardening post-yield slope is adopted to describe the superstructure behavior, whereas velocity-dependent laws are assumed to model the responses of the two surfaces of the DFPS. The yielding cha-racteristics of the superstructures are defined for increasing behavior factors in compliance with the seismic hazard of L’Aquila site (Italy) and with NTC18 assuming a lifetime of 50 years. Considering several natural seismic records and building properties under the hypo-thesis of modelling the friction coefficients of the two surfaces of the DFPS as random variables, incremental dynamic analyses are performed to evaluate the seismic fragility and the seismic reliability of these systems. Finally, seismic reliability is evaluated and seismic relia-bility-based design (SRBD) curves for the two surfaces of the double sliding devices are de-scribed

    Seismic Upgrading of Existing Reinforced Concrete Buildings Using Friction Pendulum Devices: A Probabilistic Evaluation

    Get PDF
    In many countries around the world a huge number of existing reinforced concrete (RC) structures have been realized without account for seismic detailing, even if they are located in areas subjected to high seismicity. In this context, several passive seismic protection techniques have been developed and applied to retrofit these structures such as, for an example, seismic isolation. The aim of this work is to characterize in probabilistic terms the seismic performance of a framed RC building retrofitted by means of sliding friction pendulum (FPS) devices. Specifically, the response of an existing RC building located in a high seismicity area in Italy is investigated. After the description of the main available information about the structure, a non-linear numerical model has been defined by means of fiber-elements approach. Then, non-linear dynamic analyses considering multiple recorded ground motions with the three accelerometric components have been carried out to assess the seismic response of the building with and without the retrofitting intervention composed of FPS isolators. Finally, the results are processed to achieve a probabilistic assessment of the seismic performance of the retrofitting intervention

    Large-scale oriented use of concrete for a wave energy converter: dynamic interaction and structural feasibility

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    Self restrained cracking of reinforced concrete elements

    No full text
    It is widely considered as almost impossible to avoid cracking of concrete in a common structure under service loads: a variety of reasons contribute to develop cracking, but the main principle is that concrete is a quasi-brittle material with a low capacity for deformation under tensile stress. Nevertheless, even in the cracked state, concrete can provide its contribution in terms of stiffness due to the non damaged material laying between the cracks. Tensile stresses can either be a result of external load acting on the concrete structure or due to restrained endogenous deformations. Even though cracking in concrete does not usually affect the structural capacity, its negative effect on durability asks for a correct prediction and an adequate control of the phenomenon. Commonly used design methods, which are conceived principally for direct actions, give unsatisfactory prediction of the crack opening and spacing when structures are subjected to imposed deformations, such as massive castings or other highly restrained structures. In order to study the cracking process due to restrained deformations, a set of non-linear analysis on simple tie models is performed using the Finite Element Method. Crack spacing and crack widths are measured as a mean of comparison between cracking deriving by direct actions and by imposed deformations. Finally, the results of this study are compared with the provisions of the most common codes

    Assessment of an existing prestressed concrete bridge in line with fib Bulletin 80

    No full text
    The assessment of existing reinforced concrete structures is a critical aspect for engineers. In particular, existing infrastructures are extensively exposed to environmental actions, degradation and variation of traffic loads during their service life. Hence, criteria conceived for new structures can result too conservative. The fib Bulletin 80 defines a new partial factor method suitable for existing reinforced concrete structures and infrastructures accounting for their residual service life, information from tests, measurements of variable actions and reduced target reliability according to economical and human safety criteria. The methodologies proposed in the fib Bulletin 80 have been applied to the assessment of an existing prestressed concrete bridge built in the 90s. The results are finally compared to the outcomes from the assessment performed according to EN1990
    corecore