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Abstract: In many countries around the world a huge number of existing reinforced concrete (RC)
structures have been realized without account for seismic detailing, even if they are located in areas
subjected to high seismicity. In this context, several passive seismic protection techniques have been
developed and applied to retrofit these structures such as, for an example, seismic isolation. The aim
of this work is to characterize in probabilistic terms the seismic performance of a framed RC building
retrofitted by means of sliding friction pendulum (FPS) devices. Specifically, the response of an
existing RC building located in a high seismicity area in Italy is investigated. After the description of
the main available information about the structure, a non-linear numerical model has been defined by
means of fiber-elements approach. Then, non-linear dynamic analyses considering multiple recorded
ground motions with the three accelerometric components have been carried out to assess the seismic
response of the building with and without the retrofitting intervention composed of FPS isolators.
Finally, the results are processed to achieve a probabilistic assessment of the seismic performance of
the retrofitting intervention.

Keywords: seismic isolation; existing building; probabilistic analysis; non-linear dynamic analysis;
reinforced concrete

1. Introduction

Nowadays, in many countries such as Italy, the assessment of existing structures and
infrastructures [1] is a relevant issue and particular care should be pointed out to areas with a
high seismic hazard. In fact, during the 60s and 70s many of today’s existing reinforced concrete (RC)
buildings were built without any seismic criterion or with poor detailing in comparison to the current
codes [2]. In fact, most of the existing constructions, in particular RC buildings, have been designed to
withstand mainly gravity loads. In this context, the seismic assessment is very important to define the
best retrofitting solution in order to upgrade the performance level of existing structures in line with
modern codes and safety requirements [3] within the performance-based seismic design [4,5].

In order to improve the response to seismic actions of existing RC buildings, over the years,
the isolation system with friction pendulum (FP) devices have turned out to be one of the most efficient
solutions [6]. Contextually, in the literature and in practice alternative strategies and philosophies
aimed to improve the seismic response of buildings, in general, are proposed and discussed [7–10].
With particular reference to RC-framed buildings, the main advantages of the use of FPS devices relate
to the achievement of a value of the isolation period which does not depend from the mass of the
superstructure, to the post-event self-recentering response and to the energy dissipation capacity [11,12].
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In the literature, several studies have been devoted to the proper modelling of the FP bearing response
investigating also the influence of main parameters able to describe their behaviour [13].

The evaluation of structural reliability of structural systems equipped with base isolation solution has
been widely investigated [14] also considering random seismic excitations [15]. Similarly, referring both
to 3D RC structures and to equivalent models, deterministic [16] and seismic reliability [17–19] analyses
have been carried out. Specifically, in [17–19] the seismic reliability-based design (SRBD) approach has
been proposed as a strategy to define some important design parameters for base-isolated systems.

The aim of this work is to investigate the influence of the retrofitting intervention composed of
single-concave friction pendulum devices on the seismic response on an existing reinforced concrete
building located in central Italy, which is widely recognized as an area characterized by a very high
seismicity. After the characterization of the geometrical features and material properties according to
the “knowledge levels” approach [2], a non-linear numerical model of the structure has been defined
using a fiber-approach. Then non-linear dynamic analyses have been carried out considering multiple
recorded ground motions with the three accelerometric components, scaled to the design seismic
intensity [2], to assess the seismic response of the building with and without the retrofitting intervention
composed of the FP isolators.

The results from the non-linear dynamic analysis have been useful to evaluate the effectiveness
of the retrofitting technique in probabilistic terms adopting a log-normal probabilistic model for the
output variables expressed as both the interstory drift index and horizontal relative displacement of
the FP devices. Finally, the probabilities of exceedance of the different values of the output variables
are evaluated.

2. Behavior of Single-Concave Friction Pendulum Bearings

Friction pendulum (FP) devices have been widely adopted to retrofit existing buildings in
areas characterized by a high seismicity [1,16,17]. Specifically, the FP devices are able to realize a
disconnection between the superstructure and the foundations of the building and to absorb the
major part of the displacement demand with reference to seismic response of the global structural
system. Moreover, the FP devices allow a significant level of energy dissipation by means of a frictional
mechanism which develops on the concave sliding surfaces [12,18–20].

With particular reference to single-concave FP bearings, these are devices able to support vertical
actions and transfer horizontal actions by means of an articulated slider which slides on a concave
surface having curvature radius R and radius in plan r [17]. One of the main advantages associated to
the use of single-concave FP bearings is that the fundamental period of the base-isolated structural
system Tis depends only on the radius of curvature of the concave sliding surface R, according to the
following expression:

Tis = 2π
√

R/g (1)

where g is the gravity acceleration.
In line with the assumption of small angles between the vertical and the normal direction of the

concave sliding surface of the single-concave FP devices, the bearing restoring force fb(t) expressed as a
function of time t applies [12]:

fb(t) =
W
R

ub(t) + µd(t)Wsgn
(

dub(t)
dt

)
(2)

where W = Mg denotes the total vertical load on the bearing, M is the mass on the bearing; ub(t) denotes
the horizontal projection of the displacement of the pivot point of the slider with respect to the ground;
µd(t) represents the sliding dynamic friction coefficient; sgn(dub(t)/dt) denotes the sign function of the
sliding velocity dub(t)/dt. The response of the FP device can be reproduced by means of a non-linear
hysteretic model according to [21] and in line with Figure 1. The hysteretic model representing the FP
behavior can be characterized by the following three parameters: the characteristic strength Qd = µdW;
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the post-elastic stiffness denoted as K2 = W/R; the elastic stiffness K1 that can be set as 51 times larger
than the post-elastic stiffness K2 according to [21].

On the basis of the experimental investigations of [22,23], the non-linear dependence of the dynamic
friction coefficient µd(t) on the sliding velocity dub(t)/dt can be expressed using the following expression:

µd(t) = µ f ast −
(
µ f ast − µslow

)
exp

(
−α

∣∣∣∣∣∣dub(t)
dt

∣∣∣∣∣∣
)

(3)

where µfast and µslow are the friction coefficient at high and nearly-zero sliding velocity dub(t)/dt,
respectively; α is a constant that regulates the rate of change of the friction coefficient µd(t) with velocity
in the transition from its maximum and minimum values. The model so far described is adopted in
order to reproduce the response of the single-concave FP bearings when used to retrofit the existing
RC building herein investigated. Representative values for the dynamic friction coefficient may be
found in the technical reports from manufacturers (e.g., [24]).

Appl. Sci. 2020, 10, x FOR PEER REVIEW 3 of 18 

characteristic strength Qd = μdW; the post‐elastic stiffness denoted as K2 = W/R; the elastic stiffness K1 
that can be set as 51 times larger than the post‐elastic stiffness K2 according to [21]. 

On the basis of the experimental investigations of [22,23], the non‐linear dependence of the 
dynamic friction coefficient μd(t) on the sliding velocity dub(t)/dt can be expressed using the following 
expression: 

( ) ( ) ( )expμ μ μ μ α
 

= − − −  
 

b
d fast fast slow

du t
t

dt
 (3) 

where μfast and μslow are the friction coefficient at high and nearly‐zero sliding velocity dub(t)/dt, 
respectively; α is a constant that regulates the rate of change of the friction coefficient μd(t) with 
velocity in the transition from its maximum and minimum values. The model so far described is 
adopted in order to reproduce the response of the single‐concave FP bearings when used to retrofit 
the existing RC building herein investigated. Representative values for the dynamic friction 
coefficient may be found in the technical reports from manufacturers (e.g., [24]). 

   

Force

Displacement

K1

K2
Qd

Qd : characteristic strength Qd=μdW

K1 : initial stiffness set equal to 51K2

K2 : post-elastic stiffness evaluated as W/R
 

Figure 1. Non‐linear hysteretic response of the single‐concave friction pendulum device. 
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PGA higher than 0.25 g with a probability of exceedance of 10% in 50 years). According to Figure 2, 
the building consists of an RC framed structure built in the 60s which is founded on inverted RC 
beams and have a plan dimension of 12.2 m in the transverse direction (Y) and 59.8 m in the 
longitudinal direction (X). 

The maximum height, at the roof level, is about 16 m from the foundation level. The structure is 
composed of a basement, a ground‐floor, two further floors and a roof floor. The ground‐floor (i.e., 
story 1) of the structure is surrounded by a soil embankment that significantly limits its movements 
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Figure 1. Non-linear hysteretic response of the single-concave friction pendulum device.

3. Description of the Case Study: An Existing RC Building

The case study considered for the present investigation relates to an existing framed
reinforced concrete building located in central Italy in a high seismicity region (i.e., Peak Ground
Acceleration—PGA higher than 0.25 g with a probability of exceedance of 10% in 50 years). According to
Figure 2, the building consists of an RC framed structure built in the 60s which is founded on inverted
RC beams and have a plan dimension of 12.2 m in the transverse direction (Y) and 59.8 m in the
longitudinal direction (X).

The maximum height, at the roof level, is about 16 m from the foundation level. The structure
is composed of a basement, a ground-floor, two further floors and a roof floor. The ground-floor
(i.e., story 1) of the structure is surrounded by a soil embankment that significantly limits its movements
in X and Y horizontal directions. As in the 60s Italian design code was not conceived for seismic design,
the RC building were designed without proper conception to withstand seismic actions and without
the related detailing.

The geometrical characteristics of the main RC frames that compose the structure are described in
Figure 3a–e with reference to the X and Y directions. Several typologies of beams and columns are
present as also showed in Figure 4. The details of the main longitudinal and shear reinforcements for
the different members typologies are listed in Table 1. The concrete cover is about 3 cm. The floors are
realized with the typical Italian lightened “latero-concrete” solution with RC joist having height of
16 cm and base of 10 cm located with 50 cm of spacing with a top reinforced concrete slab of 4 cm.
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This structural system is able to provide a rigid floor behavior allowing a hyperstatic redistribution of
horizontal actions (e.g., seismic action) between the different frames.

The mechanical characterization of the material properties, adopted in the numerical model,
has been performed through appropriate destructive and “in situ” non-destructive tests. According to
the prescriptions of the Italian code for structural design and assessment [2], the achieved knowledge
level (KL) is the KL3, which leads to the adoption of a confidence factor CF = 1. For instance,
the material properties will be adopted with their mean values as a result of the statistical analysis of
the data deriving from the tests.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 4 of 18 

are realized with the typical Italian lightened “latero‐concrete” solution with RC joist having height 
of 16 cm and base of 10 cm located with 50 cm of spacing with a top reinforced concrete slab of 4 cm. 
This structural system is able to provide a rigid floor behavior allowing a hyperstatic redistribution 
of horizontal actions (e.g., seismic action) between the different frames. 

5950 

12
21

 

 
Figure 2. Scheme with main dimensions of the building in plant and identification of the main RC 
frames in X (X1, X2) and Y (Y1, Y2, Y3) directions. Dimensions reported in [cm]. 

   

a) Frame X1

556 665 

15
90

 

35
0

33
0

33
0

33
0

25
0

story 1

story 2

story 3

story 4

story 5

 

Frame Y1

350 350 350 

b)

   

Frame X2

556 450 215 215 

c) 

 

 

Frame Y2

350 350 350 350 350 350 350 350 

33
0 

35
0 

33
0 

33
0 

d)

 

Figure 2. Scheme with main dimensions of the building in plant and identification of the main RC
frames in X (X1, X2) and Y (Y1, Y2, Y3) directions. Dimensions reported in [cm].

Appl. Sci. 2020, 10, x FOR PEER REVIEW 4 of 18 

are realized with the typical Italian lightened “latero‐concrete” solution with RC joist having height 
of 16 cm and base of 10 cm located with 50 cm of spacing with a top reinforced concrete slab of 4 cm. 
This structural system is able to provide a rigid floor behavior allowing a hyperstatic redistribution 
of horizontal actions (e.g., seismic action) between the different frames. 

5950 

12
21

 

 
Figure 2. Scheme with main dimensions of the building in plant and identification of the main RC 
frames in X (X1, X2) and Y (Y1, Y2, Y3) directions. Dimensions reported in [cm]. 

   

a) Frame X1

556 665 

15
90

 

35
0

33
0

33
0

33
0

25
0

story 1

story 2

story 3

story 4

story 5

 

Frame Y1

350 350 350 

b)

   

Frame X2

556 450 215 215 

c) 

 

 

Frame Y2

350 350 350 350 350 350 350 350 

33
0 

35
0 

33
0 

33
0 

d)

 
Figure 3. Cont.



Appl. Sci. 2020, 10, 8980 5 of 17Appl. Sci. 2020, 10, x FOR PEER REVIEW 5 of 18 

Frame Y3

35
0 

33
0 

33
0 

33
0 

25
0 

350 350 350 350 350 350 350 350 

e)

 

Figure 3. Cross sections of beams and columns pertaining to the main RC frames in X and Y directions. 
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The mean value of concrete compressive strength has been deduced from the crushing tests of
cores drilled in different locations and structural members of the structure and its value turns out to be
equal to fcm = 25.2 MPa. On some specimens, strain measurements have been carried out in order to
estimate the mean value of secant modulus of elasticity that is equal to Ecm = 22,000 MPa. In addition,
the characterization of the mechanical properties of steel used for reinforcement bars (FeB38k) has
been performed using the data available from tensile tests on samples taken from different structural
members. The following mean value for yield strength has been obtained: fym = 374 MPa.

The geometry of the structure with the related reinforcement arrangement and material properties
has been adopted to define an appropriate non-linear numerical models using the software code
SAP2000 [25].
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Table 1. Details of the reinforcements for the different structural members.

Structural
Member

Longitudinal
Reinforcement Shear Reinforcement Longitudinal

Reinforcement Shear Reinforcement

Story 1 2

Column type 1 2φ 20 + 5φ16/2φ20
+ 5φ16

φ6/8 mm (2 leg stirrups) 2φ20 + 5φ16/2φ20
+ 5φ16

φ6/8 mm (2 leg stirrups)
Column type 2

Column type 3 2φ20 + 5φ14/2φ20
+ 5φ14

φ6/12 mm (2 leg stirrups) 2φ20 + 5φ14/2φ20
+ 5φ14

φ6/12 mm (2 leg stirrups)

Beam type 1

Midspan:
Top 2φ14

Bottom 5φ16
φ6/19 mm (2 leg stirrups)

Midspan:
Top 2φ14

Bottom 5φ16
φ6/19 mm (2 legs stirrups)

Support:
Top 2φ14 + 5φ20

Bottom 2φ16
φ6/10 mm (2 leg stirrups)

Support:
Top 2φ14 + 5φ20

Bottom 2φ16
φ6/10 mm (2 leg stirrups)

Beam type 2

Midspan
Top 2φ12

Bottom 5φ14
φ6/19 mm (2 leg stirrups)

Midspan
Top 2φ12

Bottom 5φ14
φ6/19 mm (2 leg stirrups)

Support
Top 2φ14 + 5φ20

Bottom 3φ16
φ6/10 mm (2 leg stirrups)

Support
Top 2φ14 + 5φ20

Bottom 3φ16
φ6/10 mm (2 leg stirrups)

Beam type 3
Top 2φ10 + 2φ12

Bottom 2φ10 +
2φ12

φ6/30 mm (2 leg stirrups)
Top 4φ10

Bottom 2φ10 +
2φ12

φ6/30 mm (2 leg stirrups)

Beam type 4 Top 4φ10
Bottom 4φ10 φ6/30 mm (2 leg stirrups) Top 4φ10

Bottom 4φ10 φ6/30 mm (2 leg stirrups)

Beam type 5 Top 4φ14
Bottom 4φ14 φ6/10 mm (2 leg stirrups) Top 4φ14

Bottom 4φ14 φ6/10 mm (2 leg stirrups)

Story 3 4

Column type 1 2φ20 + 5φ14/2φ20
+ 5φ14

φ6/10 mm (2 leg stirrups) 2φ20 + 5φ14/2φ20
+ 5φ14

φ6/12 mm (2 leg stirrups)Column type 2

Column type 3 φ6/12 mm (2 leg stirrups)

Beam type 1

Midspan:
Top 2φ14

Bottom 5φ16
φ6/19 mm (2 leg stirrups)

Midspan:
Top 2φ14

Bottom 5φ16
φ6/19 mm (2 leg stirrups)

Support:
Top 2φ14 + 5φ20

Bottom 2φ16
φ6/10 mm (2 legs stirrups)

Support:
Top 2φ14 + 5φ20

Bottom 2φ16
φ6/10 mm (2 legs stirrups)

Beam type 2

Midspan
Top 2φ12

Bottom 5φ14
φ6/19 mm (2 legs stirrups)

Midspan
Top 2φ12

Bottom 5φ14
φ6/19 mm (2 legs stirrups)

Support
Top 2φ14 + 5φ20

Bottom 3φ16
φ6/10 mm (2 legs stirrups)

Support
Top 2φ14 + 5φ20

Bottom 3φ16
φ6/10 mm (2 legs stirrups)

Beam type 3
Top 3φ10

Bottom 2φ10 +
1φ12

φ6/30 mm (2 legs stirrups) Top 4φ10 + 2φ12
Bottom 2φ10 φ6/30 mm (2 legs stirrups)

Beam type 4 Top 4φ10
Bottom 4φ10 φ6/30 mm (2 legs stirrups) Top 4φ10

Bottom 4φ10 φ6/30 mm (2 legs stirrups)

Beam type 5 Top 4φ14
Bottom 4φ14 φ6/10 mm (2 legs stirrups)

Top 4φ10 + 1φ12
Bottom 2φ10 +

1φ12
φ6/10 mm (2 legs stirrups)

Story 5 (Roof )

Beam type 6 Top 2φ16 + 5φ20
Bottom 3φ16 + 2φ14 φ6/10 mm (2 legs stirrups)

Beam type 7 Top 4φ10
Bottom 2φ12 + 2φ10 φ6/10 mm (2 legs stirrups)

4. Numerical Simulation of Seismic Response of the RC Building with and without Retrofitting
Using Single-Concave FPS

In the present section the results from numerical non-linear dynamic analyses of the RC structure
under investigation are described together with the modelling hypotheses [26,27] adopted to define
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the non-linear numerical (NLN) model and the assumptions to select the seismic inputs. In particular,
SAP2000 [25] software platform has been used to realize the appropriate NLN models of the fixed-base
(FB) and base-isolated (BI) structure and to perform non-linear dynamic analyses that are useful to
evaluate in probabilistic terms the performance of the retrofitting intervention.

4.1. Definition of the Non-Linear Numerical Models for Fixed-Base/Base-Isolated RC Structure

The numerical model of the RC structure has been realized according to the geometric features
described in the previous section. In particular, the columns have been assumed as fully restrained by
the stiff inverted beams at the foundation level and the behavior of rigid floors has been accounted for
by means of in-plane diaphragm constrains [25]. The interaction in the non-linear dynamic simulations
between the structure of the ground-floor and the surrounding soil embankment has been accounted
for by means of appropriate restraints to limit the horizontal displacements in X and Y directions.
In this way, the seismic response only of the ground-floor of the structure (i.e., story 1 of Figure 3) is
restrained due to the presence of the surrounding soil embankment as will be achieved in the following.

The cross-sections of the structural members (i.e., beams and columns) have been realized
according to the fiber approach [25], as also developed in [28]. In particular, the mechanical properties
of the fibers in each cross-section have been defined differentiating between concrete cover, core and
longitudinal reinforcements. The concrete behavior in both cover and core fibers has been reproduced
by means of Mander et al. [29] constitutive relationships accounting for non-linear response in
compression and elastic with linear softening response in tension. The properties of concrete cover
fibers (i.e., tensile strength, ultimate deformation in compression) have been derived from both the mean
value of cylinder compressive strength fcm and Young’s modulus Ecm according to [30]. The response of
concrete core fibers has been defined evaluating the enhanced properties due to the confinement effects
of the stirrups evaluated adopting the model of [31]. The properties of the reinforcement have been
defined by means of an elastic-plastic law with a limited ultimate strain to reproduce both tensile ad
compressive response. The yielding strength has been set equal to the mean value fym estimated from
the tests with a Young’s modulus assumed equal to 200,000 MPa and an ultimate strain set to 7.5%.

The mechanical non-linearities have been included in the numerical model adopting a distributed
plasticity approach (the so-called “Fiber Hinge”) implemented in the software platform SAP2000 [25].
The fiber-plastic hinges so far defined are able to account for the interaction between axial load
and bending moments in X and Y directions. The moment-curvature law of the fiber-hinge law is
determined on the basis of the fiber cross-section properties previously introduced. The mechanical
non-linearity is developed in each fiber of the cross-section, but is not extended to the whole element [32],
but are included in a portion of the RC member with a predefined length (i.e., plastic hinge length).
In particular, the plastic hinge length Lp is evaluated according to a well-validated formulation by
Priestley et al. [33] formulation:

Lp = 0.08 · l + 0.022 · fym · d′ (4)

where l is the length of the member, fym is the mean yield strength of steel reinforcement from tests
and d’ is the diameter of the smallest longitudinal reinforcing bar adopted within the cross-section.
The geometric non-linearity (i.e., P-∆ effect) has been accounted for within the numerical simulations
with the evaluation of the equilibrium equations with reference to the deformed structural configuration.

The fundamental vibration period of the fixed-base structures is 0.80 s from the eigenvalue analysis
without considering any stiffness reduction in the RC beams and RC columns. This assumption is
aimed not to underestimate the effects in terms of both accelerations and seismic forces to the structure.

The retrofitting using the single-concave friction pendulum (FP) has been simulated introducing a
disconnection between superstructure and substructure at the top of the columns of the groundfloor.
In practice, the intervention may be realized by means of the removal of the load on the columns
through the use of hydraulic jacks that react on a pair of clamps fixed to each column to transfer the
load by friction. Then, a portion of the column is cut at the isolation level where the friction-pendulum
device should be located. This procedure, which is apparently very laborious, is not significantly
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demanding in practice and it is not invasive. In addition, the columns of the substructure at the isolation
level may be connected through beams to improve the safety and robustness [3]. The single-concave
friction pendulum (FP) isolators have been modeled using the non-linear link “Friction Pendulum”
implemented in SAP2000 [25]. The latter permits one to consider compressive behavior along the
vertical direction only, whereas, is able to couple the frictional properties in the X, Y directions
in plan. The model reproduces the shear behavior in line with [34] and is adapted for seismic
isolator bearings [35] according to the bi-linear relationships described by [21]. The parameters
that have been considered to design the retrofitting intervention ware: the radius of curvature R,
the stiffness values K1 and K2, and the friction coefficient µd along the two horizontal degrees of freedom
(DOFs). Regarding the vertical DOF of the isolators, a linear behavior only in compression is adopted.
The choice of the radius of curvature is related the isolation period of the structure [Equation (1)].
As also introduced in Section 2, the hysteretic behavior of FPS is represented by two stiffness values:
the post-elastic one K2 that has been calculated according to the axial load on the device and the elastic
stiffness K1 that has been assumed according to [21]. The software platform SAP 2000 [25] implements
Equation (3) [22] for the variation of sliding friction coefficient µd as a function of the sliding velocity
and time. An indicative value for the sliding friction coefficient has been evaluated considering an
empiric relation [22] between µd and the ratio NSd/NEd, where NSd is the axial load acting on the FP
device in the seismic combination of actions [2,36] and NEd represents the maximum axial load for the
adopted bearing device as provided by the producer. The parameters herein assumed to reproduce
the FP isolator behavior are the following: R = 1.5 m, µslow = 1%, µfats = 3%, α = 30 s/m. In this way,
the isolated period is equal to 2.66 s. The stiffness of the devices has been calculated according to the
vertical load acting on the isolators. The properties of the FP devices have been determined depending
on the level of the axial load on the isolator within the code seismic combination [2]. In detail, the main
seismic component along the X direction combined with the lower seismic component along the Y
direction and vice versa have been considered. In addition, both the main and the lower components
have been assumed characterized by an eccentricity in line with [2]. The worst results have been
achieved considering the eccentricity in the seismic actions. In Table 2 and in Figure 5 the main
properties of the FP devices and their planimetric location are reported. The NLN numerical models of
the FB and BI structure are reported in Figure 6.

Table 2. Types of FP devices and related characteristics.

FPS

Type 1 Type 2 Type 3 Type 4 Type 5 Type 6 Type 7 Type 8 Type 9

R [m] 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5

K2 [kN/m] 355 442 471 293 413 400 431 335 382

K1 [kN/m] 18,080 22,517 23,996 14,957 21,038 20,381 21,958 17,093 19,460
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4.2. Evaluation of the Seismic Demand and Non-Linear Dynamic Analyses

The evaluation of the seismic demand in terms of elastic pseudo-acceleration Sa is performed
considering the elastic design response spectrum related to 50 years reference period associated to
nearly-collapse limit state according to [2] with reference to the seismic hazard site. The elastic response
spectra have been defined adopting two different damping ratios as shown in Figure 7, in particular:
ξ = 5% for the fixed-base (FB) NLN model and ξ= 2% as suggested by [17] for the base-isolated (BI)
NLN model [17]. In general, the value of ξ = 5% is widely accepted for the dynamic analysis of FB RC
structures [17]. With reference to the BI structure, the value of ξ is lower than the one related to the
FB structure as the superstructure moves on the isolation level similarly to a rigid body. For instance,
most of the energy in the BI structure is dissipated by hysteretic damping which is provided by the
isolator devices. A value of ξ = 2% for BI RC structures is recognized according to common practice
and literature references [3,17].Appl. Sci. 2020, 10, x FOR PEER REVIEW 10 of 18 
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Figure 7. Elastic design response spectra according to nearly-collapse limit state [2] with two different
damping ratios.

The seismic inputs adopted to perform the non-linear dynamic analyses are represented by
21 recorded accelerograms [17] (each of them includes 3 accelerometric recordings in the respective
directions) selected from European Strong Motion Database (ESM) [37] (Table 3) and then scaled in
all directions. The selection has been carried out with the aim to define a set composed of ground
motions with different characteristics to represent both a record-to-record variability and event-to-event
variability, as commented in [3,17]. The scaling factor has been defined in X direction with respect to
the Intensity Measure (IM) related the elastic response spectrum in correspondence of the fundamental
period of vibration T1 associated to 1st eigenmode for both FB and BI structures. This is in order to
ensure the compatibility of the selected ground motion inputs with elastic design response spectra
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defined by the design code [2] for nearly-collapse limit state. Note that the scaling factor has been
defined along the direction (i.e., X direction) able to cause the worst effects. The scaled response spectra
associated to the 21 recorded accelerograms are reported in Figure 8 with reference to both the FB and
BI structures.

The non-linear dynamic analyses have been performed adopting the direct integration of the
motion equations [38,39] which regulate the dynamic behavior of the structure with its non-linearities:

[M]

{
d2u(t)

dt2

}
+ [C]

{
du(t)

dt

}
+ [K]

{
u(t)

}
=

{
F(t)

}
(5)

in which {d2u(t)/dt2}, {du(t)/dt}, {u(t)} are respectively the acceleration, velocity and displacement
vector, having considered a multi-degree freedom (MDOF) system. While, [M], [C], [K] are the mass,
proportional Rayleigh damping and stiffness matrix evaluated according to [3,17]. Finally, {F(t)} is the
vector of external forces.

In Figure 9 the hysteretic loops of one of the FP bearing subjected to the scaled motion of the
earthquake EQ5 is depicted showing how different phenomena occur during the non-linear hysteretic
response of the FPS device. In detail, it is possible to observe the influence of the velocity-dependent
behavior of the FPS device because when the displacement is peak the sliding friction coefficient
gradually decreases from µfast to µslow. In addition, the floating shape of the curves is due to the vertical
component of each ground motion.

Table 3. Selected ground motion records from European Strong Motion Database [37]: D denotes the
epicentral distance of the event in and M the related magnitude.

Earthquake Event Date M [-] Fault Mechanism D [km]

EQ1—Bingol 05/01/2003 6.3 Strike-slip 11.79

EQ2—Christchurch 06/13/2011 6 Reverse 5.1

EQ3—Darfield 09/03/2010 7.1 Strike-slip 13.31

EQ4—E Off Izu Peninsula 05/03/1998 5.5 Reverse 9.5

EQ5—EMILIA_Pianura_Padana 05/29/2012 6 Reverse 4.73

EQ6—Friuli 4th shock 09/15/1976 5.9 Reverse 16.83

EQ7—Hector Mine 10/16/1999 7.1 Strike-slip 28.61

EQ8—Honshu 08/10/1996 5.9 Reverse 13.89

EQ9—Hyogo-Ken Nanbu 01/16/1995 6.9 Strike-slip 16.6

EQ10—Landers 06/28/1992 7.3 Strike-slip 13.08

EQ11—L’Aquila mainshock 04/06/2009 6.3 Normal 5.65

EQ12—Loma Prieta 10/18/1989 6.9 Oblique 27.59

EQ13—Mid Niigata
Prefecture 10/23/2004 6.6 Reverse 16.42

EQ14—Mt. Fuji Region 03/15/2011 5.9 Strike-slip 12.8

EQ15—N. Miyagi Prefecture 07/25/2003 6.1 Reverse 9.93

EQ16—Northridge 01/17/1994 6.7 Reverse 20.19

EQ17—Off Noto Peninsula 03/25/2007 6.7 Reverse 6.64

EQ18—Olfus 05/29/2008 6.3 Strike-slip 8.25

EQ19—South Iceland 06/17/2000 6.5 Strike-slip 5.25

EQ20—Southern Iwate
Prefecture 06/13/2008 6.9 Reverse 23.08

EQ21—W. Tottori Prefecture 10/06/2000 6.6 Strike-slip 11.78
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The force in the hysteresis loops fb has been evaluated according to Equation (3). The effectiveness
of the seismic isolation retrofitting can be appreciated by the comparison between the base shear Vb
from the FB numerical model to the one of the BI numerical model (Figure 10). Note that the base shear
assessment for the FB numerical model derives from the restoring forces, whereas for the BI numerical
model derives from the inertia forces.

The maximum values of the base shear are concentrated in the time interval in which there are the
peak values of the accelerations. The dominant values of the base shear for both models are recognised
in the transverse direction Y, namely Vb,y, due to the higher stiffness of the structure. The results
highlight that the retrofitting intervention may avoid brittle shear failures with reference to frames
characterized by high stiffness if compared to the others. Furthermore, Figure 10a highlights a small
residual plastic deformation of the column of the FB model along Y direction. The shear verifications
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of each structural member has been performed according to [30] in order to confirm that shear failure
does not occur during the non-linear dynamic analyses for the BI structure.
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Starting from these values, the results of the time history analyses in terms of average interstory
displacements dr have been determined for each floor of the structure and for both X and Y directions.
By this way, the interstory drift index IDI have been calculated as:

IDI = dr/h (6)

where h is the interstory height.
In Figure 11 the IDIs are plotted as a function of the elevation of the building for both the FB

and BI models along both X and Y directions. In transverse Y direction the IDIs are smaller than in
longitudinal X one because of the differences of the stiffness of the frames in Y and X directions.
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Figure 11. Comparison between the IDIs.

The interstory drifts associated to both the ground-floor of the FB structure and to the sub-structure
of the BI structure are zero because of the restraints which simulate the ground-structure interaction
due to the presence of the soil embankment around the structure as explained in Section 4.1. In fact,
the seismic response of the story 1 (Figure 3) is restrained due to the presence of the surrounding soil
embankment and to the diaphragm constrains.

It can be recognized the drift reduction from FB model to BI model, due to the effectiveness of FP
isolators adopted for the retrofitting intervention.



Appl. Sci. 2020, 10, 8980 13 of 17

5. Probabilistic Interpretation of the Results

The results from the non-linear dynamic analyses in terms of interstory drift index IDI and
horizontal relative displacement for the FP devices dFPS have been useful to perform the probabilistic
evaluation of the performance of both FB structure and BI structure. The mentioned above parameters
have been probabilistically modeled using a lognormal distribution [17], whose statistical parameters
(mean value µ and standard deviation σ) are estimated from the numerical results of non-linear
dynamic analyses through the maximum likelihood method [40,41]. The hypothesis of lognormal
probabilistic model has been validated trough Chi-square statistical test with level of significance 5%.
The monovariate probability density functions (PDFs) have been computed according to:

f (IDI) =
1

IDIσln(IDI)
√

2π
exp

−1
2

 ln(IDI) − µln(IDI)

σln(IDI)

2 (7)

f (dFPS) =
1

dFPSσln(dFPS)

√
2π

exp

−1
2

 ln(dFPS) − µln(dFPS)

σln(dFPS)

2 (8)

The probability of exceedance Pf of a given limit state (LS) has been calculated as follows:

P f = P(IDI > IDILS) = 1− P(IDI ≤ IDILS) (9)

where the probability P(IDI≤IDILS) can be directly estimated by the lognormal cumulative density
functions (CDFs).

Figure 12a,b report the monovariate lognormal distributions (PDFs) associated to the IDIs of the
different stories with reference to both the FB and BI structure, while Figure 13a,b report the related
CDFs with the indication of a generic limit state threshold for evaluation of the associated probability
of exceedance Pf.

Adopting the probabilistic distributions so far described, it is possible to estimate the probability
of exceedance Pf for different values of IDIs and dFPS. The results in terms of probability of exceedance
Pf are reported in Figure 15a–c with reference to the different stories for the FB and BI structure and for
the isolation level. The retrofitting intervention allows to reduce significantly the demand in terms of
interstory drift leading to probability of exceedance Pf lower than 1 order of magnitude with respect to
the FB structure for specific values of the IDIs. This aspect is fundamental for the safety [42] of the
structural systems.
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Concerning the BI structure, Figure 14a,b illustrate the monovariate lognormal distributions
(PDFs) and the cumulative density functions (CDFs) related to the dFPS in both the X and Y directions.
It can be recognized that the retrofitting intervention is able to reduce the probability of exceedance of
pre-determined limit state threshold. Because the structure turns out to be stiffer in the Y direction,
both IDIs and dFPS in that direction are significantly smaller if compared to the values in the X direction.
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The descending trend of the exceeding probabilities plotted in Figure 15 is perfectly in line with
the results described in [3,17]. In fact, higher values of the limit state thresholds are associated to lower
and lower values of Pf in relation to both superstructure and isolation level. The analysis puts in
evidence the importance to assess the seismic performance in probabilistic terms for each story and
along the both directions for the both models (i.e., FB structure and BI structure). In fact, the results
highlight the structural weakness along the X direction and higher values of the exceeding probabilities
for lower floors due to also the vertical components of the records. These exceeding probabilities are
strongly reduced in the configuration retrofitted through FPS showing a strong plastic reduction of the
structural members [18]. As for the isolation level, the results demonstrate that also for the FPS devices
the responses along the two orthogonal directions are different. Specifically, along the Y direction
the seismic demand is higher due to more effective behavior of the seismic device able to reduce the
seismic demand to the superstructure. In addition, the results confirm the effectiveness of the beams
connecting the columns at the substructure (Section 4.1) able to improve the safety and robustness of
the system as proposed in [3].
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6. Conclusions

The present investigation aimed to evaluate the influence of the seismic retrofitting of an existing
RC building using single-concave friction pendulum devices in probabilistic terms. First of all,
an existing RC building has been characterized from a geometrical point of view and the related
material properties have been assessed by means of the results from destructive and non-destructive
tests. Then, non-linear numerical models of the structure have been defined using fiber cross-sections
approach for the fixed base (FB) structure and the base isolated (BI) system including proper modelling
of the response of the FP bearings under seismic actions. Non-linear dynamic analyses have been
carried out accounting 21 recorded seismic events with the three components. The records have been
scaled to the value of the pseudo-acceleration of the design elastic spectrum for nearly-collapse limit
state associated to 50 years reference life in correspondence of the fundamental periods of both the FB
and BI structures. The results of the non-linear dynamic analyses highlight the effectiveness of the
retrofitting intervention in the reduction of the value of the base shear. In particular, as in existing
RC buildings the amount of shear reinforcements is almost lower than minimum values required by
current design codes, the latter results can avoid the occurrence of brittle shear failure in columns
pertaining to stiffer RC frames. Next, the probabilistic interpretation of the results in terms of interstory
drift index and displacement at the level of the isolation devices has been carried out adopting a
lognormal probabilistic model. The probabilities of exceedance associated to different values of the
mentioned above parameters have been evaluated highlighting a reduction of more than 1 order
of magnitude between the FB structure and the structure retrofitted by means of single-concave FP
devices. This aspect is fundamental for the safety of the structure.
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