36 research outputs found

    Cellular retinol binding protein 1 transfection reduces proliferation and AKT-related gene expression in H460 non-small lung cancer cells

    Get PDF
    In recent years, new treatments with novel action mechanisms have been explored for advanced non-small cell lung cancer (NSCLC). Retinoids promote cancer cell differentiation and death and their trafficking and action is mediated from specific cytoplasmic and nuclear receptors, respectively. The purpose of this study was to investigate the effect of Cellular retinol binding protein-1 (CRBP-1) transfection in H460 human NSCLC cell line, normally not expressing CRBP-1. H460 cells were transfected by using a vector pTargeT Mammalian expression system carrying the whole sequence of CRBP-1 gene. For proliferation and apoptosis studies, cells were treated with different concentrations ofall-transRetinoic Acid (atRA) and retinol. AKT-related gene expression was analyzed by using western blot and Signosis array and results analysed by one-way analysis of variance (ANOVA) or by t-student test. CRBP-1(+)showed reduced proliferation and viability in basal condition and afteratRA treatment when compared to empty-transfected H460 cells. Reduced proliferation in CRBP-1(+)H460 cells associated to the down-regulation of pAKT/pERK/pEGFR-related genes. In particular, gene array documented the down-regulation of AKT and Stat-3-related genes, including M-Tor, Akt1, Akt2, Akt3, Foxo1, p27, Jun. Restoration of CRBP-1 expression in H460 cells reduced proliferation and viability in both basal condition and afteratRA treatment, likely by down-regulating AKT-related gene level. Further studies are needed to better clarify how those CRBP-1-related intracellular pathways contribute to counteract NSCLC progression in order to suggest a potential tool to improve efficacy of retinoid anti lung cancer adjuvant therapy

    Multiscale mechanical analysis of the elastic modulus of skin

    Get PDF
    The mechanical properties of the skin determine tissue function and regulate dermal cell behavior. Yet measuring these properties remains challenging, as evidenced by the large range of elastic moduli reported in the literature-from below one kPa to hundreds of MPa. Here, we reconcile these disparate results by dedicated experiments at both tissue and cellular length scales and by computational models considering the multiscale and multiphasic tissue structure. At the macroscopic tissue length scale, the collective behavior of the collagen fiber network under tension provides functional tissue stiffness, and its properties determine the corresponding elastic modulus (100-200 kPa). The compliant microscale environment (0.1-10 kPa), probed by atomic force microscopy, arises from the ground matrix without engaging the collagen fiber network. Our analysis indicates that indentation-based elasticity measurements, although probing tissue properties at the cell-relevant length scale, do not assess the deformation mechanisms activated by dermal cells when exerting traction forces on the extracellular matrix. Using dermal-equivalent collagen hydrogels, we demonstrate that indentation measurements of tissue stiffness do not correlate with the behavior of embedded dermal fibroblasts. These results provide a deeper understanding of tissue mechanics across length scales with important implications for skin mechanobiology and tissue engineering. STATEMENT OF SIGNIFICANCE: Measuring the mechanical properties of the skin is essential for understanding dermal cell mechanobiology and designing tissue-engineered skin substitutes. However, previous results reported for the elastic modulus of skin vary by six orders of magnitude. We show that two distinct deformation mechanisms, related to the tension-compression nonlinearity of the collagen fiber network, can explain the large variations in elastic moduli. Furthermore, we show that microscale indentation, which is frequently used to assess the stiffness perceived by cells, fails to engage the fiber network, and therefore cannot predict the behavior of dermal fibroblasts in stiffness-tunable fibrous hydrogels. This has important implications for how to measure and interpret the mechanical properties of soft tissues across length scales

    From In Silico Simulation between TGF-β Receptors and Quercetin to Clinical Insight of a Medical Device Containing Allium cepa: Its Efficacy and Tolerability on Post-Surgical Scars

    Get PDF
    1) objective: keloid and hypertrophic scars are a challenge in clinical management, causing functional and psychological discomfort. these pathological scars are caused by a proliferation of dermal tissue following skin injury. the TGF-beta/smad signal pathway in the fibroblasts and myofibroblasts is involved in the scarring process of skin fibrosis. today, multiple therapeutic strategies that target the TGF-beta/smad signal pathway are evaluated to attenuate aberrant skin scars that are sometimes difficult to manage. we performed a head-to-head, randomized controlled trial evaluating the appearance of the post-surgical scars of 64 subjects after two times daily topical application to compare the effect of a class I pullulan-based medical device containing allium cepa extract 5% and hyaluronic acid 5% gel versus a class I medical device silicone gel on new post-surgical wounds. (2) methods: objective scar assessment using the vancouver scar scale (VSS), POSAS, and other scales were performed after 4, 8, and 12 weeks of treatment and statistical analyses were performed. the trial was registered in clinical trials.gov ( NCT05412745). In parallel, molecular docking simulations have been performed to investigate the role of allium cepa in TGF-beta/smad signal pathway. (3) results: we showed that VSS, POSAS scale, itching, and redness reduced significantly at week 4 and 8 in the subjects using devices containing allium cepa and HA. no statistically significant differences in evaluated scores were noted at 12 weeks of treatment. safety was also evaluated by gathering adverse events related to the application of the gel. subject compliance and safety with the assigned gel were similar between the two study groups. molecular docking simulations have shown how allium cepa could inhibit fibroblasts proliferation and contraction via TGF- beta/smad signal pathway. (4) conclusions: the topical application of a pullulan-based medical device containing allium cepa and HA showed a clear reduction in the local inflammation, which might lead to a reduced probability of developing hypertrophic scars or keloids

    Preliminary Evidence of Efficacy, Safety, and Treatment Satisfaction with Tirbanibulin 1% Ointment: A Clinical Perspective on Actinic Keratoses

    Get PDF
    background: actinic keratosis is a common precancerous skin lesion that can progress into invasive squamous cell carcinomas. many topical treatments for actinic keratoses often have poor tolerability and prolonged duration. Tirbanibulin is a novel synthetic drug with potent antitumor and antiproliferative activities. methods: we conducted a single-center, prospective and observational study using tirbanibulin ointment on a 25 cm2 area for 5 consecutive days on 30 participants with AKs on the face or scalp. They were followed for at least 57 days to assess the safety profile and efficacy of the drug as well as treatment satisfaction. we evaluated six signs of local skin reaction (LSR): erythema, scaling, crusting, swelling, blisters/pustules, and erosions/ulcerations, grading the severity as mild, moderate, or severe. The effectiveness was evaluated both clinically and dermoscopically. the treatment satisfaction was assessed using the treatment satisfaction questionnaire for medication (TSQM 1.4). results: on day 57, 70% of the patients showed a complete clinical and dermoscopic response. The highest scores obtained from the TSQM 1.4 were more evident in the convenience and side effects domains. most LSRs, including erythema (83.3%), scaling (30%), and swelling (3.3%), occurred on day 8 but resolved spontaneously. Conclusion: Tirbanibulin is a viable therapeutic option with a short regimen treatment and good tolerability, which favors therapy adherence

    Expression of IL-23/Th17-related cytokines in basal cell carcinoma and in the response to medical treatments

    Get PDF
    Several immune-related markers have been implicated in basal cell carcinoma (BCC) pathogenesis. The BCC inflammatory infiltrate is dominated by Th2 cytokines, suggesting a specific state of immunosuppression. In contrast, regressing BCC are characterized by a Th1 immune response with IFN-γ promoting a tumor suppressive activity. IL-23/Th17-related cytokines, as interleukin (IL)-17, IL-23 and IL-22, play a significant role in cutaneous inflammatory diseases, but their involvement in skin carcinogenesis is controversial and is poorly investigated in BCC. In this study we investigated the expression of IFN-γ, IL-17, IL-23 and IL-22 cytokines in BCC at the protein and mRNA level and their modulation during imiquimod (IMQ) treatment or photodynamic therapy (PDT). IFN-γ, IL-17, IL-23 and IL-22 levels were evaluated by immunohistochemistry and quantitative Real Time PCR in 41 histopatho-logically-proven BCCs (28 superficial and 13 nodular) from 39 patients. All BCC samples were analyzed at baseline and 19 of 41 also during medical treatment (9 with IMQ 5% cream and 10 with MAL-PDT). Association between cytokines expression and clinico-pathological variables was evaluated. Higher levels of IFN-γ, IL-17, IL-23 and IL-22 were found in BCCs, mainly in the peritumoral infiltrate, compared to normal skin, with the expression being correlated to the severity of the inflammatory infiltrate. IFN-γ production was higher in superficial BCCs compared to nodular BCCs, while IL-17 was increased in nodular BCCs. A significant correlation was found between IFN-γ and IL-17 expression with both cytokines expressed by CD4+ and CD8+ T-cells. An increase of all cytokines occurred during the inflammatory phase induced by IMQ and at the early time point of PDT treatment, with significant evidence for IFN-γ, IL-23, and IL-22. Our results confirm the role of IFN-γ and support the involvement of IL-23/Th17-related cytokines in BCC pathogenesis and in the inflammatory response during IMQ and MAL-PDT treatments

    Sortilin expression is essential for pro-nerve growth factor-induced apoptosis of rat vascular smooth muscle cells.

    Get PDF
    BACKGROUND: Sortilin, a member of the Vps10p-domain receptor family, has been demonstrated a key regulator in mediating cellular response to pro-neurotrophins. In the present study, we investigated the role of sortilin in the apoptotic pathway of vascular smooth muscle cells. METHODS AND PRINCIPAL FINDINGS: Immunohistochemistry revealed that sortilin was barely detectable in human and rat normal young vessels, while its expression was increased in human fibroatheromatous plaques. Sortilin immunodetection was also marked in the neointima of the rat aorta fifteen days after ballooning.In vitro, rat aortic intimal cells expressed higher sortilin levels than normal media SMCs; sortilin was distributed in the cytoplasm and in correspondence of the cell membrane. After 48 h, pro-nerve growth factor (proNGF) induced the strong dose-dependent increase of intimal cell apoptosis and the accumulation of sortilin protein. ProNGF was a more potent apoptotic inducer than equimolar or even higher concentration of NGF, whereas brain derived neutrotrophic factor was ineffective. Targeted interfering RNA-mediated sortilin reduction counteracted proNGF-induced apoptosis without affecting p75(NTR) expression. ProNGF-induced apoptosis was associated to NF-κB down-regulation and bax increase. Inhibition of NF-κB activity increased intimal cell apoptosis that did not further increase with the addition of proNGF. CONCLUSIONS: Our results indicate that sortilin expression characterizes human atheromatous lesions and rat aortic post-injury neointima, and suggest that sortilin represents an important regulator of proNGF-induced SMC apoptosis and arterial remodeling

    Multiscale mechanical analysis of the elastic modulus of skin

    No full text
    The mechanical properties of the skin determine tissue function and regulate dermal cell behavior. Yet measuring these properties remains challenging, as evidenced by the large range of elastic moduli reported in the literature—from below one kPa to hundreds of MPa. Here, we reconcile these disparate results by dedicated experiments at both tissue and cellular length scales and by computational models considering the multiscale and multiphasic tissue structure. At the macroscopic tissue length scale, the collective behavior of the collagen fiber network under tension provides functional tissue stiffness, and its properties determine the corresponding elastic modulus (100–200 kPa). The compliant microscale environment (0.1–10 kPa), probed by atomic force microscopy, arises from the ground matrix without engaging the collagen fiber network. Our analysis indicates that indentation-based elasticity measurements, although probing tissue properties at the cell-relevant length scale, do not assess the deformation mechanisms activated by dermal cells when exerting traction forces on the extracellular matrix. Using dermal-equivalent collagen hydrogels, we demonstrate that indentation measurements of tissue stiffness do not correlate with the behavior of embedded dermal fibroblasts. These results provide a deeper understanding of tissue mechanics across length scales with important implications for skin mechanobiology and tissue engineering. Statement of Significance: Measuring the mechanical properties of the skin is essential for understanding dermal cell mechanobiology and designing tissue-engineered skin substitutes. However, previous results reported for the elastic modulus of skin vary by six orders of magnitude. We show that two distinct deformation mechanisms, related to the tension–compression nonlinearity of the collagen fiber network, can explain the large variations in elastic moduli. Furthermore, we show that microscale indentation, which is frequently used to assess the stiffness perceived by cells, fails to engage the fiber network, and therefore cannot predict the behavior of dermal fibroblasts in stiffness-tunable fibrous hydrogels. This has important implications for how to measure and interpret the mechanical properties of soft tissues across length scales.ISSN:1742-7061ISSN:1878-756

    Retinoids in Fungal Infections: From Bench to Bedside

    No full text
    Retinoids\u2014a class of chemical compounds derived from vitamin A or chemically related to it\u2014are used especially in dermatology, oncohematology and infectious diseases. It has been shown that retinoids\u2014from their first generation\u2014exert a potent antimicrobial activity against a wide range of pathogens, including bacteria, fungi and viruses. In this review, we summarize current evidence on retinoids\u2019 efficacy as antifungal agents. Studies were identified by searching electronic databases (MEDLINE, EMBASE, PubMed, Cochrane, Trials.gov) and reference lists of respective articles from 1946 to today. Only articles published in the English language were included. A total of thirty-nine articles were found according to the criteria. In this regard, to date, In vitro and In vivo studies have demonstrated the efficacy of retinoids against a broad-spectrum of human opportunistic fungal pathogens, including yeast fungi that normally colonize the skin and mucosal surfaces of humans such as Candida spp., Rhodotorula mucilaginosa and Malassezia furfur, as well as environmental moulds such as Aspergillus spp., Fonsecae monofora and many species of dermatophytes associated with fungal infections both in humans and animals. Notwithstanding a lack of double-blind clinical trials, the efficacy, tolerability and safety profile of retinoids have been demonstrated against localized and systemic fungal infections

    Overview of germline and somatic genetic alterations in basal and squamous cell carcinoma: a review of the current literature

    No full text
    Non-melanoma skin cancers (NMSCs), including basal and squamous cell carcinomas, represent the most common malignancies among Caucasians. Over two million cases of NMSC occur each year in the US, with a progressive increase in incidence. There are well-known environmental risk factors, such as iatrogenic or ionizing radiation exposure, but the effect of chronic ultraviolet radiation, especially ultraviolet B radiation, is one of the main predisposing factors. Currently, based on our knowledge of the pathophysiology of most NMSCs, we have a better understanding of the associated genetic risk factors. The aim of this study was to evaluate the factors that contribute to the onset of NMSC through a comprehensive literature research
    corecore