365 research outputs found

    Deconstructing double-barred galaxies in 2D and 3D. II. Two distinct groups of inner bars

    Full text link
    The intrinsic photometric properties of inner and outer stellar bars within 17 double-barred galaxies are thoroughly studied through a photometric analysis consisting of: i) two-dimensional multi-component photometric decompositions, and ii) three-dimensional statistical deprojections for measuring the thickening of bars, thus retrieving their 3D shape. The results are compared with previous measurements obtained with the widely used analysis of integrated light. Large-scale bars in single- and double-barred systems show similar sizes, and inner bars may be longer than outer bars in different galaxies. We find two distinct groups of inner bars attending to their in-plane length and ellipticity, resulting in a bimodal behaviour for the inner/outer bar length ratio. Such bimodality is related neither to the properties of the host galaxy nor the dominant bulge, and it does not show a counterpart in the dimension off the disc plane. The group of long inner bars lays at the lower end of the outer bar length vs. ellipticity correlation, whereas the short inner bars are out of that relation. We suggest that this behaviour could be due to either a different nature of the inner discs from which the inner bars are dynamically formed, or a different assembly stage for the inner bars. This last possibility would imply that the dynamical assembly of inner bars is a slow process taking several Gyr to happen. We have also explored whether all large-scale bars are prone to develop an inner bar at some stage of their lives, possibility we cannot fully confirm or discard.Comment: 14 pages, 8 figures, 1 table. Accepted for publication in MNRA

    The intrinsic three-dimensional shape of galactic bars

    Get PDF
    We present the first statistical study on the intrinsic three-dimensional (3D) shape of a sample of 83 galactic bars extracted from the CALIFA survey. We use the galaXYZ code to derive the bar intrinsic shape with a statistical approach. The method uses only the geometric information (ellipticities and position angles) of bars and discs obtained from a multi-component photometric decomposition of the galaxy surface-brightness distributions. We find that bars are predominantly prolate-triaxial ellipsoids (68%), with a small fraction of oblate-triaxial ellipsoids (32%). The typical flattening (intrinsic C/A semiaxis ratio) of the bars in our sample is 0.34, which matches well the typical intrinsic flattening of stellar discs at these galaxy masses. We demonstrate that, for prolate-triaxial bars, the intrinsic shape of bars depends on the galaxy Hubble type and stellar mass (bars in massive S0 galaxies are thicker and more circular than those in less massive spirals). The bar intrinsic shape correlates with bulge, disc, and bar parameters. In particular with the bulge-to-total (B/T) luminosity ratio, disc g-r color, and central surface brightness of the bar, confirming the tight link between bars and their host galaxies. Combining the probability distributions of the intrinsic shape of bulges and bars in our sample we show that 52% (16%) of bulges are thicker (flatter) than the surrounding bar at 1σ\sigma level. We suggest that these percentages might be representative of the fraction of classical and disc-like bulges in our sample, respectively.Comment: 18 pages, 11 figures, accepted for publication in MNRA

    Stellar populations in the bulges of isolated galaxies

    Get PDF
    open7siWe present photometry and long-slit spectroscopy for 12 S0 and spiral galaxies selected from the Catalogue of Isolated Galaxies. The structural parameters of the sample galaxies are derived from the Sloan Digital Sky Survey i-band images by performing a two-dimensional photometric decomposition of the surface brightness distribution. This is assumed to be the sum of the contribution of a Sersic bulge, an exponential disc, and a Ferrers bar characterized by elliptical and concentric isophotes with constant ellipticity and position angles. The rotation curves and velocity dispersion profiles of the stellar component are measured from the spectra obtained along the major axis of galaxies. The radial profiles of the Hβ, Mg and Fe line- strength indices are derived too. Correlations between the central values of the Mg2 and Fe line-strength indices and the velocity dispersion are found. The mean age, total metallicity and total α/Fe enhancement of the stellar population in the centre and at the radius, where the bulge gives the same contribution to the total surface brightness as the remaining components, are obtained using stellar population models with variable element abundance ratios. We identify intermediate-age bulges with solar metallicity and old bulges with a large spread in metallicity. Most of the sample bulges display supersolar α/Fe enhancement, no gradient in age and negative gradients of metallicity and α/Fe enhancement. These findings support a formation scenario via dissipative collapse where environmental effects are remarkably less important than in the assembly of bulges of galaxies in groups and clusters.openMorelli, Lorenzo; Parmiggiani, Marco; Corsini, ENRICO MARIA; Costantin, Luca; DALLA BONTA', Elena; Méndez Abreu, J.; Pizzella, AlessandroMorelli, Lorenzo; Parmiggiani, Marco; Corsini, ENRICO MARIA; Costantin, Luca; DALLA BONTA', Elena; Méndez Abreu, J.; Pizzella, Alessandr

    No evidence for small disk-like bulges in a sample of late-type spirals

    Get PDF
    About 20% of low-redshift galaxies are late-type spirals with a small or no bulge component. Although they are the simplest disk galaxies in terms of structure and dynamics, the role of the different physical processes driving their formation and evolution is not yet fully understood. We investigated whether small bulges of late-type spirals follow the same scaling relations traced by ellipticals and large bulges and if they are disk-like or classical bulges. We derived the photometric and kinematic properties of 9 nearby late-type spirals. To this aim, we analyzed the surface brightness distribution from the i-band images of the Sloan Digital Sky Survey and obtained the structural parameters of the galaxies from a two-dimensional photometric decomposition. We measured the line-of-sight stellar velocity distribution within the bulge effective radius from the long-slit spectra taken with high spectral resolution at the Telescopio Nazionale Galileo. We used the photometric and kinematic properties of the sample bulges to study their location in the Fundamental Plane, Kormendy, and Faber-Jackson relations defined for ellipticals and large bulges. We found that our sample bulges satisfy some of the photometric and kinematic prescriptions for being considered disk-like bulges such as small sizes and masses with nearly exponential light profiles, small bulge-to-total luminosity ratios, low stellar velocity dispersions, and ongoing star formation. However, each of them follows the same scaling relations of ellipticals, massive bulges, and compact early-type galaxies so they cannot be classified as disk-like systems. We find a single population of galaxy spheroids that follow the same scaling relations, where the mass seems to lead to a smooth transition in the photometric and kinematic properties from less massive bulges to more massive bulges and ellipticals.Comment: Accepted for publication in A&A, 20 pages, 10 figure

    On the observational diagnostics to separate classical and disk-like bulges

    Get PDF
    Flattened bulges with disk-like properties are considered to be the end product of secular evolution processes at work in the inner regions of galaxies. On the contrary, classical bulges are characterized by rounder shapes and thought to be similar to low-luminosity elliptical galaxies. We aim at testing the variety of observational diagnostics which are commonly adopted to separate classical from disk-like bulges in nearby galaxies. We select a sample of eight unbarred lenticular galaxies to be morphologically and kinematically undisturbed with no evidence of other components than bulge and disk. We analyze archival data of broad-band imaging from SDSS and integral-field spectroscopy from the ATLAS3D^{\rm 3D} survey to derive the photometric and kinematic properties, line-strength indices, and intrinsic shape of the sample bulges. We argue that the bulge S\'ersic index is a poor diagnostics to discriminate different bulge types. We find that the combination of line-strength with either kinematic or photometric diagnostics does not provide a clear separation for half of the sample bulges. We include for the first time the intrinsic three-dimensional shape of bulges as a possible discriminant of their nature. All bulges turn out to be thick oblate spheroids, but only one has a flattening consistent with that expected for outer disks. We conclude that bulge classification may be difficult even adopting all observational diagnostics proposed so far and that classical and disk-like bulges could be more confidently identified by considering their intrinsic shape

    Observational hints of radial migration in disc galaxies from CALIFA

    Get PDF
    Context. According to numerical simulations, stars are not always kept at their birth galactocentric distances but they have a tendency to migrate. The importance of this radial migration in shaping galactic light distributions is still unclear. However, if radial migration is indeed important, galaxies with different surface brightness (SB) profiles must display differences in their stellar population properties. Aims: We investigate the role of radial migration in the light distribution and radial stellar content by comparing the inner colour, age, and metallicity gradients for galaxies with different SB profiles. We define these inner parts, avoiding the bulge and bar regions and up to around three disc scale lengths (type I, pure exponential) or the break radius (type II, downbending; type III, upbending). Methods: We analysed 214 spiral galaxies from the CALIFA survey covering different SB profiles. We made use of GASP2D and SDSS data to characterise the light distribution and obtain colour profiles of these spiral galaxies. The stellar age and metallicity profiles were computed using a methodology based on full-spectrum fitting techniques (pPXF, GANDALF, and STECKMAP) to the Integral Field Spectroscopic CALIFA data. Results: The distributions of the colour, stellar age, and stellar metallicity gradients in the inner parts for galaxies displaying different SB profiles are unalike as suggested by Kolmogorov-Smirnov and Anderson-Darling tests. We find a trend in which type II galaxies show the steepest profiles of all, type III show the shallowest, and type I display an intermediate behaviour. Conclusions: These results are consistent with a scenario in which radial migration is more efficient for type III galaxies than for type I systems, where type II galaxies present the lowest radial migration efficiency. In such a scenario, radial migration mixes the stellar content, thereby flattening the radial stellar properties and shaping different SB profiles. However, in light of these results we cannot further quantify the importance of radial migration in shaping spiral galaxies, and other processes, such as recent star formation or satellite accretion, might play a role

    Physics of ULIRGs with MUSE and ALMA: The PUMA project: III. Incidence and properties of ionised gas disks in ULIRGs, associated velocity dispersion, and its dependence on starburstiness

    Get PDF
    CONTEXT: A classical scenario suggests that ultra-luminous infrared galaxies (ULIRGs) transform colliding spiral galaxies into a spheroid-dominated early-type galaxy. Recent high-resolution simulations have instead shown that, under some circumstances, rotation disks can be preserved during the merging process or rapidly regrown after coalescence. Our goal is to analyse in detail the ionised gas kinematics in a sample of ULIRGs to infer the incidence of gas rotational dynamics in late-stage interacting galaxies and merger remnants. AIMS: We analysed integral field spectrograph MUSE data of a sample of 20 nearby (z < 0.165) ULIRGs (with 29 individual nuclei) as part of the Physics of ULIRGs with MUSE and ALMA (PUMA) project. We used multi-Gaussian fitting techniques to identify gaseous disk motions and the 3D-Barolo tool to model them. METHODS: We found that 27% (8 out of 29) individual nuclei are associated with kiloparsec-scale disk-like gas motions. The rest of the sample displays a plethora of gas kinematics, dominated by winds and merger-induced flows, which makes the detection of rotation signatures difficult. On the other hand, the incidence of stellar disk-like motions is ∼2 times larger than gaseous disks, as the former are probably less affected by winds and streams. The eight galaxies with a gaseous disk present relatively high intrinsic gas velocity dispersion (σ0 ∈ [30 − 85] km s−1), rotationally supported motions (with gas rotation velocity over velocity dispersion vrot/σ0 ∼ 1 − 8), and dynamical masses in the range (2 − 7)×1010 M⊙. By combining our results with those of local and high-z disk galaxies (up to z ∼ 2) from the literature, we found a significant correlation between σ0 and the offset from the main sequence (δMS), after correcting for their evolutionary trends. RESULTS: Our results confirm the presence of kiloparsec-scale rotating disks in interacting galaxies and merger remnants in the PUMA sample, with an incidence going from 27% (gas) to ≲50% (stars). Their gas σ0 is up to a factor of ∼4 higher than in local normal main sequence galaxies, similar to high-z starbursts as presented in the literature; this suggests that interactions and mergers enhance the star formation rate while simultaneously increasing the velocity dispersion in the interstellar medium
    • …
    corecore