10 research outputs found

    Study of the association between 3111T/C polymorphism of the CLOCK gene and the presence of overweight in schoolchildren,

    Get PDF
    Objectives: To evaluate the association between 3111T/C polymorphism of the CLOCK gene and the presence of obesity and sleep duration in children aged 6-13 years. In adults, this genetic variant has been associated with duration of sleep, ghrelin levels, weight, and eating habits. Although short sleep duration has been linked to obesity in children, no study has aimed to identify the possible molecular mechanisms of this association to date. Methods: Weight, height, and circumferences were transformed into Z-scores for age and gender. Genotyping was performed using TaqMan methodology. A questionnaire regarding hours of sleep was provided to parents. The appropriate statistical tests were performed. Results: This study evaluated 370 children (45% males, 55% females, mean age 8.5 ± 1.5 years). The prevalence of overweight was 18%. The duration of sleep was, on average, 9.7 hours, and was inversely related to age (p < 0.001). Genotype distribution was: 4% CC, 31% CT, and 65% TT. There was a trend toward higher prevalence of overweight in children who slept less than nine hours (23%) when compared to those who slept more than ten hours (16%, p = 0.06). Genotype was not significantly correlated to any of the assessed outcomes. Conclusions: The CLOCK 3111T/C polymorphism was not significantly associated with overweight or sleep duration in children in this city

    Novel Heterozygous Nonsense GLI2 Mutations in Patients with Hypopituitarism and Ectopic Posterior Pituitary Lobe without Holoprosencephaly

    No full text
    Context: GLI2 is a transcription factor downstream in Sonic Hedgehog signaling, acting early in ventral forebrain and pituitary development. GLI2 mutations were reported in patients with holoprosencephaly (HPE) and pituitary abnormalities. Objective: The aim was to report three novel frameshift/nonsense GLI2 mutations and the phenotypic variability in the three families. Setting: The study was conducted at a university hospital. Patients and Methods: The GLI2 coding region of patients with isolated GH deficiency (IGHD) or combined pituitary hormone deficiency was amplified by PCR using intronic primers and sequenced. Results: Three novel heterozygous GLI2 mutations were identified: c. 2362_2368del p. L788fsX794 (family 1), c. 2081_2084del p. L694fsX722 (family 2), and c. 1138 G > T p. E380X (family 3). All predict a truncated protein with loss of the C-terminal activator domain. The index case of family 1 had polydactyly, hypoglycemia, and seizures, and GH, TSH, prolactin, ACTH, LH, and FSH deficiencies. Her mother and seven relatives harboring the same mutation had polydactyly, including two uncles with IGHD and one cousin with GH, TSH, LH, and FSH deficiencies. In family 2, a boy had cryptorchidism, cleft lip and palate, and GH deficiency. In family 3, a girl had hypoglycemia, seizures, excessive thirst and polyuria, and GH, ACTH, TSH, and antidiuretic hormone deficiencies. Magnetic resonance imaging of four patients with GLI2 mutations and hypopituitarism showed a hypoplastic anterior pituitary and an ectopic posterior pituitary lobe without HPE. Conclusion: We describe three novel heterozygous frameshift or nonsense GLI2 mutations, predicting truncated proteins lacking the activator domain, associated with IGHD or combined pituitary hormone deficiency and ectopic posterior pituitary lobe without HPE. These phenotypes support partial penetrance, variable polydactyly, midline facial defects, and pituitary hormone deficiencies, including diabetes insipidus, conferred by heterozygous frameshift or nonsense GLI2 mutations. (J Clin Endocrinol Metab 95: E384-E391, 2010)FAPESP Fundacao de Amparo a Pesquisa do Estado de Sao Paulo[05/04726-0]FAPESP Fundacao de Amparo a Pesquisa do Estado de Sao Paulo[07/56490-5]Conselho Nacional de Desenvolvimento Cientifico e Tecnologico-CNPq[301477/2009-4]Conselho Nacional de Desenvolvimento Cientifico e Tecnologico-CNPq[301339/2008-9]Conselho Nacional de Desenvolvimento Cientifico e Tecnologico-CNPq[300982/2009-7

    Genetic Predictors Of Long-term Response To Growth Hormone (gh) Therapy In Children With Gh Deficiency And Turner Syndrome: The Influence Of A Socs2 Polymorphism.

    No full text
    There is great interindividual variability in the response to GH therapy. Ascertaining genetic factors can improve the accuracy of growth response predictions. Suppressor of cytokine signaling (SOCS)-2 is an intracellular negative regulator of GH receptor (GHR) signaling. The objective of the study was to assess the influence of a SOCS2 polymorphism (rs3782415) and its interactive effect with GHR exon 3 and -202 A/C IGFBP3 (rs2854744) polymorphisms on adult height of patients treated with recombinant human GH (rhGH). Genotypes were correlated with adult height data of 65 Turner syndrome (TS) and 47 GH deficiency (GHD) patients treated with rhGH, by multiple linear regressions. Generalized multifactor dimensionality reduction was used to evaluate gene-gene interactions. Baseline clinical data were indistinguishable among patients with different genotypes. Adult height SD scores of patients with at least one SOCS2 single-nucleotide polymorphism rs3782415-C were 0.7 higher than those homozygous for the T allele (P < .001). SOCS2 (P = .003), GHR-exon 3 (P= .016) and -202 A/C IGFBP3 (P = .013) polymorphisms, together with clinical factors accounted for 58% of the variability in adult height and 82% of the total height SD score gain. Patients harboring any two negative genotypes in these three different loci (homozygosity for SOCS2 T allele; the GHR exon 3 full-length allele and/or the -202C-IGFBP3 allele) were more likely to achieve an adult height at the lower quartile (odds ratio of 13.3; 95% confidence interval of 3.2-54.2, P = .0001). The SOCS2 polymorphism (rs3782415) has an influence on the adult height of children with TS and GHD after long-term rhGH therapy. Polymorphisms located in GHR, IGFBP3, and SOCS2 loci have an influence on the growth outcomes of TS and GHD patients treated with rhGH. The use of these genetic markers could identify among rhGH-treated patients those who are genetically predisposed to have less favorable outcomes.99E1808-1

    The sitting height/height ratio for age in healthy and short individuals and its potential role in selecting short children for SHOX analysis

    No full text
    Aims: To determine the presence of abnormal body proportion, assessed by sitting height/height ratio for age and sex (SH/H SDS) in healthy and short individuals, and to estimate its role in selecting short children for SHOX analysis. Methods: Height, sitting height and weight were evaluated in 1,771 healthy children, 128 children with idiopathic short stature (ISS), 58 individuals with SHOX defects (SHOX-D) and 193 females with Turner syndrome (TS). Results: The frequency of abnormal body proportion, defined as SH/H SDS >2, in ISS children was 16.4% (95% CI 10-22%), which was higher than in controls (1.4%, 95% CI 0.8-1.9%, p 2 were less common in children (48%, 95% CI 37-59%) and in adults (28%, 95% CI 20-36%) with TS. Conclusion: Abnormal body proportions were observed in almost all individuals with SHOX-D, 50% of females with TS and 16% of children considered ISS. Defects in SHOX gene were identified in 19% of ISS children with SH/H SDS >2, suggesting that SH/H SDS is a useful tool to select children for undergoing SHOX molecular studies806449456CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO - CNPQFUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESP301339/2008-9; 300982/2009-7; 304678/2012-02008/50184-2; 2013/03236-5; 2007/59555-

    Screening of targeted panel genes in Brazilian patients with primary ovarian insufficiency.

    No full text
    Primary ovarian insufficiency (POI) is a heterogeneous disorder associated with several genes. The majority of cases are still unsolved. Our aim was to identify the molecular diagnosis of a Brazilian cohort with POI. Genetic analysis was performed using a customized panel of targeted massively parallel sequencing (TMPS) and the candidate variants were confirmed by Sanger sequencing. Additional copy number variation (CNV) analysis of TMPS samples was performed by CONTRA. Fifty women with POI (29 primary amenorrhea and 21 secondary amenorrhea) of unknown molecular diagnosis were included in this study, which was conducted in a tertiary referral center of clinical endocrinology. A genetic defect was obtained in 70% women with POI using the customized TMPS panel. Twenty-four pathogenic variants and two CNVs were found in 48% of POI women. Of these variants, 16 genes were identified as BMP8B, CPEB1, INSL3, MCM9, GDF9, UBR2, ATM, STAG3, BMP15, BMPR2, DAZL, PRDM1, FSHR, EIF4ENIF1, NOBOX, and GATA4. Moreover, a microdeletion and microduplication in the CPEB1 and SYCE1 genes, respectively, were also identified in two distinct patients. The genetic analysis of eleven patients was classified as variants of uncertain clinical significance whereas this group of patients harbored at least two variants in different genes. Thirteen patients had benign or no rare variants, and therefore the genetic etiology remained unclear. In conclusion, next-generation sequencing (NGS) is a highly effective approach to identify the genetic diagnoses of heterogenous disorders, such as POI. A molecular etiology allowed us to improve the disease knowledge, guide decisions about prevention or treatment, and allow familial counseling avoiding future comorbidities
    corecore