69,534 research outputs found

    Out-of-plane seismic response of stone masonry walls: experimental and analytical study of real piers

    Get PDF
    This paper presents the application of an existing simplified displacement-based procedure to the characterization of the nonlinear force-displacement relationship for the out-of-plane behaviour of unreinforced traditional masonry walls. According to this procedure, tri-linear models based on three different energy based criteria were constructed and confronted with three experimental tests on existing stone masonry constructions. Moreover, a brief introduction is presented regarding the main characteristics of the in situ cyclic testing recently carried out using distributed loads, as well as results obtained during the experimental campaigns performed. The comparison between the experimental and the analytical results are presented and discussed

    Discontinuous Transition in a Boundary Driven Contact Process

    Full text link
    The contact process is a stochastic process which exhibits a continuous, absorbing-state phase transition in the Directed Percolation (DP) universality class. In this work, we consider a contact process with a bias in conjunction with an active wall. This model exhibits waves of activity emanating from the active wall and, when the system is supercritical, propagating indefinitely as travelling (Fisher) waves. In the subcritical phase the activity is localised near the wall. We study the phase transition numerically and show that certain properties of the system, notably the wave velocity, are discontinuous across the transition. Using a modified Fisher equation to model the system we elucidate the mechanism by which the the discontinuity arises. Furthermore we establish relations between properties of the travelling wave and DP critical exponents.Comment: 14 pages, 9 figure

    Chinese–Spanish neural machine translation enhanced with character and word bitmap fonts

    Get PDF
    Recently, machine translation systems based on neural networks have reached state-of-the-art results for some pairs of languages (e.g., German–English). In this paper, we are investigating the performance of neural machine translation in Chinese–Spanish, which is a challenging language pair. Given that the meaning of a Chinese word can be related to its graphical representation, this work aims to enhance neural machine translation by using as input a combination of: words or characters and their corresponding bitmap fonts. The fact of performing the interpretation of every word or character as a bitmap font generates more informed vectorial representations. Best results are obtained when using words plus their bitmap fonts obtaining an improvement (over a competitive neural MT baseline system) of almost six BLEU, five METEOR points and ranked coherently better in the human evaluation.Peer ReviewedPostprint (published version

    Structural vulnerability of Nepalese Pagoda temples

    Get PDF
    Nepal is located in one of the most severe earthquake prone areas of the world, lying between collisions of Indian to the Eurasian plate, moving continuously, resulting in frequent devastating earthquakes within this region. Moreover, different authors refer mention that the accumulated slip deficit (central seismic gap) is likely to produce large earthquakes in the future. Also, the analysis of the available information of previous earthquakes indicates the potential damage that can occurs in unreinforced traditional masonry structures in future earthquakes. Most of the Nepalese pagoda temples were erected following very simple rules and construction details to accomplish with seismic resistance requirement, or even without any consideration for seismic resistance, during the period of Malla dynasty (1200-1768). Presently, conservation and restoration of ancient monuments are one of the major concerns in order to preserve our built heritage, transferring it to the future generations. The present paper is devoted to outline particular structural fragility characteristics in the historic Nepalese pagoda temples which affect their seismic performance. Moreover, based on the parametric analysis identified structural weaknesses/fragilities of pagoda topology, the associated traditional building technology and constructional details
    • …
    corecore