27 research outputs found
Monitoring the Mean Vector and the Covariance Matrix of Bivariate Processes
This paper proposes the joint use of two charts based on the non-central chi-square statistic (NCS statistic) for monitoring the mean vector and the covariance matrix of bivariate processes, named as the joint NCS charts. The expression to compute the ARL, which is defined as the average number of samples the joint charts need to signal an out-of-control condition, is derived. The joint NCS charts might be more sensitive to changes in the mean vector or, alternatively, more sensitive to changes in the covariance matrix, accordingly to the values of their design parameters. In general, the joint NCS charts are faster than the combined T2 and |S| charts in signaling out-of-control conditions. Once the proposed scheme signals, the user can immediately identify the out-of-control variable. The risk of
misidentifying the out-of-control variable is small (less than 5.0%)
Gráfico de controle MCMAX para o monitoramento simultâneo do vetor de médias e da matriz de covariâncias
O gráfico T² de Hotelling e o gráfico |S| da variância generalizada são utilizados para monitorar o vetor de médias e a matriz de covariâncias de processos multivariados. Neste artigo, propõe-se o uso de um único gráfico de controle para o monitoramento de processos bivariados, isto é, o gráfico de controle MCMAX cujo valor da estatística de monitoramento corresponde ao maior valor em módulo de quatro medidas amostrais das duas características de qualidade sob monitoramento, isto é, as suas médias e variâncias padronizadas. O usuário de gráficos de controle já está bem familiarizado com médias e variâncias amostrais; o mesmo não pode ser dito a respeito da estatística de Hotelling ou da variância generalizada. Conseqüentemente, ele preferirá usar o gráfico de controle proposto ao invés dos gráficos conjuntos de T² e |S|. Além disso, o usuário, em geral, se sente mais seguro em intervir no processo somente após a ocorrência de um segundo ponto na região de ação do gráfico. Se o sinal for dado por dois pontos, não necessariamente vizinhos, porém próximos e na região de ação, o gráfico proposto terá um desempenho geral superior ao dos gráficos conjuntos de T² e |S| na detecção de desajustes do processo, exceto quando a correlação entre as duas características de qualidade for muito alta. Quando a correlação é muito alta e a causa especial desloca a média e/ou aumenta a variância de apenas uma das variáveis, X ou Y, os gráficos de T² e |S| são, em geral, mais ágeis do que gráfico MCMAX.The control chart and the generalized variance |S| chart are used for monitoring the mean vector and the covariance matrix of multivariate processes. In this article, we propose the use of a single chart for monitoring bivariate processes, that is, the MCMAX control chart based on a new statistic, which corresponds to the maximum among four sample values: the standardized sample means (in module) and the standardized sample variances (weighted). The sample means and sample variances are well known by the users; the same cannot be said for the Hotelling's statistic or the generalized variance. Consequently, they will prefer to use the proposed chart instead of the joint and |S| charts. In general, the user prefers to wait until the occurrence of a second point beyond the control limit (not far from the first one) before interfering in the process. With this new rule, the proposed chart is faster in signaling out-of-control conditions, except when the correlation between the two quality characteristics is too high. In this case, the joint and |S| charts are faster is signaling assignable causes that only affect one of the two quality characteristics, changing its mean and/or increasing its variance.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq
O uso da estatística de qui-quadrado no controle de processos
Dois gráficos de controle são, usualmente, utilizados no monitoramento da média e da variância de um processo. em geral, utiliza-se o gráfico de Xbarra para a detecção de alterações da média, e o gráfico de R para a sinalização de aumentos da variabilidade. Neste artigo, propõe-se o uso de uma única estatística e, portanto, de um único gráfico, como alternativa à prática comum do monitoramento de processos por meio de dois gráficos de controle. O gráfico proposto, baseado na estatística de Qui-quadrado não-central, tem se mostrado mais eficiente que os gráficos de Xbarra e R. Além disso, se as decisões sobre as condições dos parâmetros do processo são baseadas no histórico das observações e não apenas na última observação, então o uso da estatística de Qui-quadrado não-central é indicado para a detecção de pequenas perturbações. Neste estudo, são também apresentados os gráficos de controle da média móvel ponderada exponencialmente (EWMA) baseados na estatística Qui-quadrado não-central.It is standard practice to use joint charts in process control, one designed to detect shifts in the mean and the other to detect changes in the variance of the process. In this paper, we propose the use of a single chart to control both mean and variance. Based on the noncentral chi square statistic, the single chart is faster in detecting shifts in the mean and increases in variance than its competitor, the joint Xbar and R charts. The noncentral chi square statistic can also be used with the EWMA procedure, particularly in the detection of small mean shifts, accompanied or not by slight increases in variance.Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq
Monitoring the mean vector and the covariance matrix of multivariate processes with sample means and sample ranges
Os gráficos conjuntos de e R e S² são os mais utilizados para o monitoramento da média e da dispersão do processo. Com os tamanhos de amostra usuais de 4 e 5, os gráficos de R em uso conjunto são ligeiramente inferior aos gráficos de e S² em uso conjunto em termos da eficiência em detectar alterações no processo. Neste artigo, mostra-se que para o caso multivariado, os gráficos baseados nas médias amostrais padronizadas e amplitudes amostrais (gráfico MRMAX) ou nas médias amostrais padronizadas e variâncias amostrais (gráfico MVMAX) são similares em termos da eficiência em detectar alterações no vetor de médias e/ou na matriz de covariâncias. A familiaridade do usuário com o cálculo de amplitudes amostrais é um aspecto favorável do gráfico MRMAX. Um exemplo é apresentado para ilustrar a aplicação do gráfico proposto.The joint and S² charts are the most common charts used for monitoring the process mean and dispersion. With the usual sample sizes of 4 and 5, the joint and R charts are slightly inferior to the joint and S² charts in terms of efficiency in detecting process shifts. In this article, we show that for the multivariate case, the charts based on the standardized sample means and sample ranges (MRMAX chart) or on the standardized sample means and sample variances (MVMAX chart) are similar in terms of efficiency in detecting shifts in the mean vector and/or in the covariance matrix. User's familiarity with the computation of sample ranges is a point in favor of the MRMAX chart. An example is presented to illustrate the application of the proposed chart.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq
O efeito da autocorrelação no planejamento das cartas de controle de x̄ e EWMA
No planejamento dos gráficos de controle destinados ao monitoramento da média do processo, assume-se que esta permanece fixa em seu valor-alvo até a ocorrência de uma causa especial, que a desloca. em muitos processos, contudo, é mais razoável supor que a média oscila mesmo na ausência de causas especiais. Para descrever este comportamento oscilatório, tem-se utilizado o modelo AR (1). Quando esta oscilação é grande, o melhor desempenho do gráfico de x̄ é obtido com amostras unitárias. O mesmo não se observa com a carta de EWMA (exceto quando o parâmetro de ponderação λ é próximo de um); os melhores desempenhos são obtidos com a adoção de amostras de tamanho n > 1 e λ pequeno, mesmo quando o objetivo é a detecção rápida de grandes deslocamentos da média. Neste estudo, tem-se utilizado como medida de desempenho o TES - tempo médio entre a ocorrência de uma mudança na posição em torno da qual a média oscila e sua sinalização pelo gráfico de controle. Quando a média do processo oscila, o TES passa a ser uma função do número esperado de visitas aos estados transientes de uma cadeia de Markov.The design of the control charts for the process mean assumes that this parameter remains fixed on its target value until the occurrence of a special cause that moves it. However, in many cases, it is more reasonable to assume that the mean wanders even in the absence of special causes. The AR(1) model has been considered to describe this wandering behavior. When the wandering behavior is responsible for significant proportion of data variability, the best performance of the x̄ chart is obtained with samples of size one (n=1). The same is not true for the EWMA control chart (except when the smoothing parameter λ is very close to one); its best performance is achieved with the adoption of n > 1 and small λ, even when the focus is to easily detect significant changes in the process mean position. In this study, the ATS, the average time between the occurrence of a change in the process mean position and the signal, was used as a performance measure. When the process mean wanders, the ATS becomes a function of the expected number the transient states of a Markov chain are visited.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES
O efeito da autocorrelação no planejamento das cartas de controle de x̄ e EWMA The effect of the autocorrelation on the design of the x̄ and EWMA control charts
No planejamento dos gráficos de controle destinados ao monitoramento da média do processo, assume-se que esta permanece fixa em seu valor-alvo até a ocorrência de uma causa especial, que a desloca. Em muitos processos, contudo, é mais razoável supor que a média oscila mesmo na ausência de causas especiais. Para descrever este comportamento oscilatório, tem-se utilizado o modelo AR (1). Quando esta oscilação é grande, o melhor desempenho do gráfico de x̄ é obtido com amostras unitárias. O mesmo não se observa com a carta de EWMA (exceto quando o parâmetro de ponderação λ é próximo de um); os melhores desempenhos são obtidos com a adoção de amostras de tamanho n > 1 e λ pequeno, mesmo quando o objetivo é a detecção rápida de grandes deslocamentos da média. Neste estudo, tem-se utilizado como medida de desempenho o TES - tempo médio entre a ocorrência de uma mudança na posição em torno da qual a média oscila e sua sinalização pelo gráfico de controle. Quando a média do processo oscila, o TES passa a ser uma função do número esperado de visitas aos estados transientes de uma cadeia de Markov.The design of the control charts for the process mean assumes that this parameter remains fixed on its target value until the occurrence of a special cause that moves it. However, in many cases, it is more reasonable to assume that the mean wanders even in the absence of special causes. The AR(1) model has been considered to describe this wandering behavior. When the wandering behavior is responsible for significant proportion of data variability, the best performance of the x̄ chart is obtained with samples of size one (n=1). The same is not true for the EWMA control chart (except when the smoothing parameter λ is very close to one); its best performance is achieved with the adoption of n > 1 and small λ, even when the focus is to easily detect significant changes in the process mean position. In this study, the ATS, the average time between the occurrence of a change in the process mean position and the signal, was used as a performance measure. When the process mean wanders, the ATS becomes a function of the expected number the transient states of a Markov chain are visited
Tempo de implantação de sistemas ERP: análise da influência de fatores e aplicação de técnicas de gerenciamento de projetos ERP systems introduction time: factors, analysis and application of projects management techniques
Freqüentemente, a implantação de sistemas ERP é complexa e demorada, requerendo, em alguns casos, três ou quatro anos. Em geral, um sistema ERP divide-se em módulos cujas implantações são feitas em vários estágios. Um problema sério é que os prazos para a implantação desses módulos são críticos e raramente são cumpridos. Esses atrasos geram insatisfação dos clientes, pois resultam em custos adicionais não previstos. A implantação de sistemas ERP depende de vários fatores, alguns dos quais têm muita influência nos prazos de implantação. Considera-se neste trabalho a técnica de planejamento de experimentos para a determinação dos principais fatores. Além disso, são usados métodos de caminhos críticos para a identificação das atividades que requerem mais investimentos para que haja redução no tempo total de implantação do projeto.<br>Usually the implementation of ERP systems is very complex, and not immediate, in some cases requires three or even four years. In general, the ERP system is divided in modules, and its implementation is made in stages. At each stage, a few modules are implemented. According to several authors the deadlines of modules implementation are critical, and rarely are obeyed, so such delays make the customer insatisfied because they result in additional costs for them. The implementation of ERP are dictaded by several factors, some of them have more influence on its duration. The technique of Design Planning is considered here to determine these factors. Moreover, using Critical Path Methods are identified the bottleneck activities which require more investment in order to reduce the duration of whole project