25 research outputs found

    Anãs brancas pulsantes

    Get PDF
    00

    Anãs brancas pulsantes

    Get PDF
    00

    Anã branca R548

    Get PDF
    15

    Evolução empírica da faixa de instabilidade das estrelas ZZ Ceti

    Get PDF
    As estrelas ZZ Cetis, também chamadas de DAVs, são anãs brancas com atmosfera de hidrogênio que mostram variabilidade fotométrica. Neste trabalho buscamos estudar a pureza, a existência ou não de variáveis e estrelas constantes com mesmas Tef e log g, e definir com melhor precisão os contornos da faixa de instabilidade das estrelas ZZ Cetis. Para isto realizamos observações de séries temporais fotométricas para identificar novas estrelas do tipo ZZ Ceti, e também obtivemos espectros óticos para determinação dos parâmetros atmosféricos (Tef e log g), utilizando modelos atmosféricos com convecção descrita pela teoria de comprimento de mistura, com ML2/® = 0, 6. Ao longo deste trabalho identificamos 3 novas estrelas do tipo ZZ Ceti, WDJ0000−0046, WDJ2334+0103 e WDJ1650+3010, dentre 67 para as quais não encontramos variabilidade até o nosso limite de detecção, próximo de 2 mma. Além disto estudamos a distribuição de massa através de espectrosóoticos de 170 estrelas, assim como a comparação destes resultados com outros publicados na literatura. Também analisamos a distribuição de massa de outras amostras de espectrosóticos de anãs brancas: 2253 espectros do Sloan Digital Sky Survey e 449 espectros do Two Degree Field. Em todas distribuições estudadas, observamos um aumento na massa das estrelas da faixa de instabilidade e as mais frias, região de temperatura onde aumentam a convecção e o número de partículas neutras. O aumento de massa observado provavelmente não é real, e sim provocado pela forma como são aproximadas as interações de partículas ionizadas com o campo elétrico (efeito Stark) e de partículas neutras (Van der Walls), nos modelos de atmosfera. A razão pela qual não propomos que o aumento de massa seja real é que os mesmos parâmetros atmosféricos, quando determinados pelas cores fotométricas, não apresentam este aumento. Um resultado de nossa análise é que a faixa de instabilidade das estrelas ZZ Cetis, determinada através de espectrosóticos de alta razão sinal/ruído, contém apenas estrelas variáveis em seu interior. Face á descoberta de estrelas variáveis com amplitudes de 1,5 mma, previamente classificadas como não variáveis, será necessário um estudo mais profundo de todas as estrelas classificadas como não observadas como variáveis (NOV) até o momento, reduzindo os limites de detecção para a faixa de 1 mma, para definirmos com precisão as bordas da faixa de instabilidade das ZZ Cetis.ZZ Ceti are hydrogen atmosphere white dwarf stars that show photometric variability. In this work we study the purity and define with better precision the borders of the instability strip of the ZZ Cetis stars. We obtained times series photometric observations to identify new ZZ Ceti stars, and optical spectra for the determination of the atmospheric (Teff and log g) parameters, using atmospheric models with convection described by mixing length theory with ML2/® = 0.6. We identified 3 new ZZ Ceti stars: WDJ0000−0046, WDJ2334+0103, and WDJ1650+3010, among 67 stars for which we detected no variability up to our detection limit about 2 mma. We analyzed the mass distribution of the 170 stars we observed with S/N ¸ 70 optical spectra. We also studied the mass distribution of other samples of white dwarfs, 2253 spectra of Sloan Digital Sky Survey and 449 spectra of the Two Degree Field. In all studied distributions, we observed an increase in the mass determined for the stars cooler than the instability strip. This apparent increase occurs in a region where there is an increase in the depth of convection and in the number of neutral particles. We propose the increase in mass is not real, but caused by the form the Stark and Van der Walls broadenings are estimated in the atmospheric models. The reason we do not trust the mass increase is that the determination of masses using photometric colors, for the same stars, do not show such increase. One result from our research is that we find no constant stars inside the instability strip when we consider only our high S/N spectra. Considering the recent discovery of variable stars with amplitudes down to 1.5 mma, previously classified as not variables, we deem it necessary to restudy all stars not observed to vary around the instability strip, down to limits of 1 mma

    Gemini spectra of 12 000 k white dwarf stars

    Get PDF
    We report signal-to-noise ratio (S/N) - ~100 optical spectra for four DA white dwarf stars acquired with the GMOS spectrograph of the 8-m Gemini north telescope. These stars have 18 < g < 19 and are around Teff ~ 12 000 K, where the hydrogen lines are close to maximum. Our purpose is to test if the effective temperatures and surface gravities derived from the relatively low-S/N ( S/N ≈ 21) optical spectra acquired by the Sloan Digital Sky Survey through model atmosphere fitting are trustworthy. Our spectra range from 3800 to 6000 Å, therefore including Hβ to H9. The H8 line was only marginally present in the SDSS spectra, but is crucial to determine the gravity. When we compare the values published by Kleinman et al. and Eisenstein et al. with our line-profile technique (LPT) fits, the average differences are: ∆ - ~Teff 320 K, systematically lower in the SDSS, and ∆ log - ~ 0.24 dex, systematically larger in the SDSS. The correlation between the gravity and the effective temperature can only be broken at wavelengths bluer than 3800 Å. The uncertainties in Teff are 60 per cent larger, and in log g larger by a factor of 4, than the internal uncertainties of Kleinman et al. and Eisenstein et al

    White dwarf mass distribution in the SDSS

    Get PDF
    We determined masses for the 7167 DA and 507 DB white dwarf stars classified as single and non-magnetic in Data Release 4 of the Sloan Digital Sky Survey (SDSS). We obtained revised Teff and log g determinations for the most massive stars by fitting the SDSS optical spectra with a synthetic spectra grid derived from model atmospheres extending to log g = 10.0. We also calculate radii from evolutionary models and create volume-corrected mass distributions for our DA and DB samples. The mean mass for the DA stars brighter than g = 19 and hotter than Teff = 12 000K is (M) DA - ~ 0.593 ± 0.016Mʘ. For the 150 DBs brighter than g = 19 and hotter than Teff = 16 000 K, we find (M) DB = 0.711 ± 0.009Mʘ. It appears the mean mass for DB white dwarf stars may be significantly larger than that for DAs. We also report the highest mass white dwarf stars ever found, up to 1.33Mʘ

    Towards a pure ZZ Ceti instability strip

    Get PDF
    Context. We have observed again two stars inside the ZZ Ceti instability strip that were previously classified as not-observed-to-vary (NOV) by Mukadam et al. (2004) and found them to be low-amplitude variables. Some evidence points to a pure ZZ Ceti instability strip; other evidence contests it. Aims. The two stars previously classified as NOV have Sloan Digital Sky Survey (SDSS) spectroscopic effective temperatures that place them inside the ZZ Ceti instability strip, and they were “contaminating” the strip as constant stars, which could indicate that the instability strip was no longer a simple evolutionary stage. A pure instability strip indicates that pulsation is a normal phase which all DAs must go through. Methods. We used effective temperatures derived from SDSS optical spectra by comparing them with model atmospheres to look for pulsators through time-resolved photometry and stars previously classified as NOV. Results. Our new results indicate, but do not prove, a pure instability strip, because there are still other NOV stars that need to be observed again. Additionally, we have discovered five other ZZ Ceti stars based on their effective temperatures

    The everchanging pulsating white dwarf GD358

    Get PDF
    We report 323 hours of nearly uninterrupted time series photometric observations of the DBV star GD 358 acquired with the Whole Earth Telescope (WET) during May 23rd to June 8th, 2000. We acquired more than 232 000 independent measurements. We also report on 48 hours of time-series photometric observations in Aug 1996. We detected the non-radial g-modes consistent with degree l = 1 and radial order 8 to 20 and their linear combinations up to 6th order. We also detect, for the first time, a high amplitude l = 2 mode, with a period of 796 s. In the 2000 WET data, the largest amplitude modes are similar to those detected with the WET observations of 1990 and 1994, but the highest combination order previously detected was 4th order. At one point during the 1996 observations, most of the pulsation energy was transferred into the radial order k = 8 mode, which displayed a sinusoidal pulse shape in spite of the large amplitude. The multiplet structure of the individual modes changes from year to year, and during the 2000 observations only the k = 9 mode displays clear normal triplet structure. Even though the pulsation amplitudes change on timescales of days and years, the eigenfrequencies remain essentially the same, showing the stellar structure is not changing on any dynamical timescale
    corecore