1,609 research outputs found

    Emerging trends in the photodynamic inactivation (PDI) applied to the food decontamination

    Get PDF
    The food and drink manufacturing industry is constantly seeking for alternative sanitation and disinfection systems that may achieve the same antimicrobial efficiency of conventional chemical sanitisers and at the same time be convenient in terms of energy and water savings. A candidate technology for this purpose is the use of light in combination with photosensitisers (PS) to generate a bioactive effect against microbial agents in a process defined as photodynamic inactivation (PDI). This technology can be applied to the food processing of different food matrices to reduce the microbial load of foodborne pathogens such as bacteria, fungi, viruses and protozoa. Also, the PDI can be exploited to increase the shelf-life period of food by inactivation of spoiling microbes. This review analyses new developments in the last five years for PDI systems applied to the food decontamination from foodborne pathogens. The photosensitisation mechanisms and methods are reported to introduce the applied technology against microbial targets in food matrices. Recent blue light emitting diodes (LED) lamp systems for the PDI mediated by endogenous PS are discussed as well PDI technologies with the use of exogenous PS from plant sources such as curcumin and porphyrin-based molecules. The updated overview of the most recent developments in the PDI technology both in wavelengths and employed PS will provide further points of analysis for the advancement of the research on new competitive and effective disinfection systems in the food industry

    Evaluation of the energy utilization index in sheep milk cooling systems

    Get PDF
    The energy consumption of sheep milk cooling systems (MCSs) was quantified in this study to provide original information filling a literature gap on the impact of sheep milk cooling on the energy and economic balance in dairy farms. Performance and energy monitoring tests were conducted simultaneously on 22 MCSs in Sardinia (Italy). The results determined the cooling time as a function of the performance class and number of milkings. The Energy Utilization Index (EUI) was applied to measure the energy required to cool down the milk and estimate the incidence on its price. The average EUI was 1.76 kWh 100 L−1 for two-milkings and 2.43 kWh 100 L−1 for four-milkings MCSs, whereas the CO2 emissions ranged from 998 to 1378 g CO2 100 L−1 for two- and four-milkings MCSs, respectively. The estimated energy consumption for the storage of refrigerated sheep milk was 0.12 kWh 100 L−1. The malfunctioning MCSs averagely consumed 31% more energy than regular systems. The energy cost for cooling accounted for 0.61% on the current sheep milk price in Italy. Based on the analysis, the reported EUI values can be used as a preliminary indicator of the regular operation of MCSs

    Stabilization of Tollmien-Schlichting waves by finite amplitude optimal streaks in the Blasius boundary layer

    No full text
    International audienceIn this Letter we show by numerical simulation that streamwise streaks of sufficiently large amplitude are able to stabilize Tollmien-Schlichting waves in zero pressure gradient boundary layers at least up to Re = 1000. This stabilization is due to the spanwise averaged part of the nonlinear basic flow distortion induced by the streaks and occurs for streak amplitudes lower than the critical threshold beyond which secondary inflectional instability is observed. A new control strategy is implemented using optimal perturbations in order to generate the streaks. © 2002 American Institute of Physics

    Increasing the agricultural sustainability of closed agrivoltaic systems with the integration of vertical farming: A case study on baby-leaf lettuce

    Get PDF
    The photovoltaic (PV) greenhouses are closed agrivoltaic (CA) systems that allow the production of energy and food on the same land, but may result in a yield reduction when the shading of the PV panels is excessive. Adopting innovative cropping systems can increase the yield of the CA area, generating a more productive and sustainable agrosystem. In this case study we quantified the increase of land productivity derived from the integration of an experimental vertical farm (VF) for baby leaf lettuce inside a pre-existing commercial CA. The mixed system increased the yield by 13 times compared to the CA and the average LER was 1.31, but only 12 % of the energy consumption was covered by the CA energy. To achieve the energy self-sufficiency and avoid the related CO2 emissions, the VF area should not exceed 7–18 % of the CA area, depending on the PV energy yield and the daily light integral (DLI) of the LED lighting, meaning a land consumption from 5 to 14 times higher than the VF area. The support of the PV energy was essential for the profitability of the VFCA. Design features and solutions were proposed to increase the agronomic and economic sustainability of the VFCA. The VFs can be considered a possible answer for the reconversion of the actual underutilized CAs with high PV cover ratios into productive and efficient cropping systems, but a trade-off between energy production and land consumption should be identified to ensure an acceptable environmental sustainability of the mixed system

    Agricultural sustainability estimation of the European photovoltaic greenhouses

    Get PDF
    The integration of the photovoltaic (PV) energy in the greenhouse farm has raised concerns on the agricultural sustainability of this specific agrosystem in terms of crop planning and management, due to the shading cast by the PV panels on the canopy. The PV greenhouse (PVG) can be classified on the basis of the PV cover ratio (PVR), that is the ratio of the projected area of PV panels to the ground and the total greenhouse area. In this paper, we estimated the yield of 14 greenhouse horticultural and floricultural crops inside four commercial PVG types spread in southern Europe, with PVR ranging from 25 to 100%. The aim of the work is to identify the PVG types suitable for the cultivation of the considered species, based on the best trade-off between PV shading and crop production. The daily light integral (DLI) was used to compare the light scenarios inside the PVGs to the crop light requirements, and estimate the potential yield. The structures with a PVR of 25% were compatible with the cultivation of all considered species, including the high light demanding ones (tomato, cucumber, sweet pepper), with an estimated negligible or limited yield reduction (below 25%). The medium light species (such as asparagus) with an optimal DLI lower than 17 mol m−2 d−1 and low light crops can be cultivated inside PVGs with a PVR up to 60%. Only low light demanding floricultural species with an optimal DLI lower than 10 mol m−2 d−1, such as poinsettia, kalanchoe and dracaena, were compatible inside PVGs with a PVR up to 100%. Innovative cropping systems should be considered to overcome the penalizing light scenarios of the PVGs with high PVR, also implementing LED supplementary lighting. This paper contributes to identify the sustainable PVG types for the chosen species and the alternative crop managements in terms of transplantation period and precision agriculture techniques, aimed at increasing the crop productivity and adaptability inside the PVG agrosystems

    Spatio-temporal development of the long and short-wave vortex-pair instabilities

    No full text
    International audienceWe consider the spatio-temporal development of the long-wave and short-wave instabilities in a pair of counter-rotating vortices in the presence of a uniform axial advection velocity. The stability properties depend upon the aspect ratio a/b of the vortex pair, where a is the core radius of the vortices and b their separation, and upon W0/U0 the ratio between the self-induced velocity of the pair and the axial advection velocity. For sufficiently small W0/U0, the instabilities are convective, but an increase of W0/U0 may lead to an absolute instability. Near the absolute instability threshold, spatial growth rates are larger than those predicted by temporal stability theory. Considering aeronautical applications, it is shown that instabilities of the type considered in this communication cannot become absolute in farfield wakes of high aspect ratio wings. © 2000 American Institute of Physics

    Gene expression profiling of Mycobacterium avium subsp. paratuberculosis in simulated multi-stress conditions and within THP-1 cells reveals a new kind of interactive intramacrophage behaviour

    Get PDF
    Recent studies have identified in Mycobacterium avium subsp. paratuberculosis (MAP), already known as a pathogen in ruminants, a potential zoonotic agent of some autoimmune diseases in humans. Therefore, considering the possible risk for public health, it is necessary a thorough understanding of MAP's gene expression during infection of human host as well as the identification of its immunogenic and/or virulence factors for the development of appropriate diagnostic and therapeutic tools.In order to characterize MAP's transcriptome during macrophage infection, we analyzed for the first time the whole gene expression of a human derived strain of MAP in simulated intraphagosomal conditions and after intracellular infection of the human macrophage cell line THP-1 by using the DNA-microarray technology. Results showed that MAP shifts its transcriptome to an adaptive metabolism for an anoxic environment and nutrient starvation. It up-regulates several response factors to oxidative stress or intracellular conditions and allows, in terms of transcription, a passive surface peptidoglycan spoliation within the macrophage along with an intensification of the anabolic activity for lipidic membrane structures.These results indicate a possible interactive system between MAP and its host cell based on the internal mimicry unlike other intracellular pathogens, bringing new hypothesis in the virulence and pathogenicity of MAP and its importance in human health

    Delaying transition to turbulence by a passive mechanism

    No full text
    International audienceReducing skin friction is important in nature and in many technological applications. This reduction may be achieved by reducing stresses in turbulent boundary layers, for instance tailoring biomimetic rough skins. Here we take a second approach consisting of keeping the boundary layer laminar as long as possible by forcing small optimal perturbations. Because of the highly non-normal nature of the underlying linearized operator, these perturbations are highly amplified and able to modify the mean velocity profiles at leading order. We report results of wind-tunnel experiments in which we implement this concept by using suitably designed roughness elements placed on the skin to enforce nearly optimal perturbations. We show that by using this passive control technique it is possible to sensibly delay transition to turbulence. © 2006 The American Physical Society

    Experimental study of the stabilization of Tollmien-Schlichting waves by finite amplitude streaks

    No full text
    International audienceIt has recently been found by using temporal and spatial numerical simulations that steady optimal streaks of moderate amplitude, i.e., sufficiently large but not exceeding the critical amplitude for the inflectional instability, are able to reduce the growth of Tollmien-Schlichting (TS) waves up to their complete suppression. This investigation aims at experimentally verifying this stabilizing effect by generating stable and symmetric, close to sinusoidal, streaks of moderate amplitudes (~12% of the free-stream velocity) by means of a spanwise array of cylindrical roughness elements. The three-dimensional (3D) streaky base flow is then subjected to a secondary instability generated through a spanwise slot in the plate by means of regulated blowing and suction. In this study the stabilizing role of the streaks on TS waves is unambiguously confirmed and by increasing the height of the roughness elements, thus inducing larger amplitude streaks, we are also able to show that the stabilizing action on the TS waves increases with the streak amplitude. These results are the first to confirm the numerical predictions reported in earlier works. The full cross-stream plane has been measured at different downstream positions allowing a complete evaluation and comparison of the different amplitude measures used in previous experimental works. Furthermore, theoretical impulse response analysis and stability calculations are applied to the present experimental streaky base flow enabling a qualitative comparison of the 3D modulated TS wave distribution. © 2005 American Institute of Physics
    • …
    corecore