5 research outputs found

    Large-amplitude flapping of an inverted flag in a uniform steady flow – a vortex-induced vibration

    Get PDF
    The dynamics of a cantilevered elastic sheet, with a uniform steady flow impinging on its clamped end, have been studied widely and provide insight into the stability of flags and biological phenomena. Recent measurements by Kim et al. (J. Fluid Mech., vol. 736, 2013, R1) show that reversing the sheet’s orientation, with the flow impinging on its free edge, dramatically alters its dynamics. In contrast to the conventional flag, which exhibits (small-amplitude) flutter above a critical flow speed, the inverted flag displays large-amplitude flapping over a finite band of flow speeds. The physical mechanisms giving rise to this flapping phenomenon are currently unknown. In this article, we use a combination of mathematical theory, scaling analysis and measurement to establish that this large-amplitude flapping motion is a vortex-induced vibration. Onset of flapping is shown mathematically to be due to divergence instability, verifying previous speculation based on a two-point measurement. Reducing the sheet’s aspect ratio (height/length) increases the critical flow speed for divergence and ultimately eliminates flapping. The flapping motion is associated with a separated flow – detailed measurements and scaling analysis show that it exhibits the required features of a vortex-induced vibration. Flapping is found to be periodic predominantly, with a transition to chaos as flow speed increases. Cessation of flapping occurs at higher speeds – increased damping reduces the flow speed range where flapping is observed, as required. These findings have implications for leaf motion and other biological processes, such as the dynamics of hair follicles, because they also can present an inverted-flag configuration

    Flapping dynamics of an inverted flag

    Get PDF
    The dynamics of an inverted flag are investigated experimentally in order to find the conditions under which self-excited flapping can occur. In contrast to a typical flag with a fixed leading edge and a free trailing edge, the inverted flag of our study has a free leading edge and a fixed trailing edge. The behaviour of the inverted flag can be classified into three regimes based on its non-dimensional bending stiffness scaled by flow velocity and flag length. Two quasi-steady regimes, straight mode and fully deflected mode, are observed, and a limit-cycle flapping mode with large amplitude appears between the two quasi-steady regimes. Bistable states are found in both straight to flapping mode transition and flapping to deflected mode transition. The effect of mass ratio, relative magnitude of flag inertia and fluid inertia, on the non-dimensional bending stiffness range for flapping is negligible, unlike the instability of the typical flag. Because of the unsteady fluid force, a flapping sheet can produce elastic strain energy several times larger than a sheet of the deformed mode, improving the conversion of fluid kinetic energy to elastic strain energy. According to the analysis of the leading-edge vortex formation process, the time scale of optimal vortex formation correlates with efficient conversion to elastic strain energy during bending

    On the Behavior of Pliable Plate Dynamics in Wind: Application to Vertical Axis Wind Turbines

    Get PDF
    Numerous studies have shown that flexible materials improve resilience and durability of a structure. Several studies have investigated the behavior of elastic plates under the influence of a free stream, such as studies of the fluttering flag and others of shape reconfiguration, due to a free stream. The principle engineering contribution of this thesis is the design and development of a vertical axis wind turbine that features pliable blades which undergo various modes of behavior, ultimately leading to rotational propulsion of the turbine. The wind turbine design was tested in a wind tunnel and at the Caltech Laboratory for Optimized Wind Energy. Ultimately, the flexible blade vertical axis wind turbine proved to be an effective way of harnessing the power of the wind. In addition, this body of work builds on the current knowledge of elastic cantilever plates in a free stream flow by investigating the inverted flag. While previous studies have focused on the fluid structure interaction of a free stream on elastic cantilever plates, none had studied the plate configuration where the trailing edge was clamped, leaving the leading edge free to move. Furthermore, the studies presented in this thesis establish the geometric boundaries of where the large-amplitude flapping occurs.</p

    On the scaling of drag reduction by reconfiguration in plants

    Get PDF
    Slender flexible structures such as plants are deformed by external flow. When the deformation is significant, this results in a reduction of drag. We give a theoretical value of the exponent that characterizes the drag law. This theoretical value is shown to compare well with experimental data on a very large variety of plants. It is found that reconfiguration affects more the local bending stress than the total drag. Moreover, a non-linearity in the bending law does not affect significantly the mechanism
    corecore