145 research outputs found
Thermodynamic scaling of diffusion in supercooled Lennard-Jones liquids
The manner in which the intermolecular potential u(r) governs structural
relaxation in liquids is a long standing problem in condensed matter physics.
Herein we show that diffusion coefficients for simulated Lennard-Jones m-6
liquids (8<m<36) in normal and moderately supercooled states are a unique
function of the variable rho^g/T, where rho is density and T is temperature.
The scaling exponent g is a material specific constant whose magnitude is
related to the steepness of the repulsive part of u(r), evaluated around the
distance of closest approach between particles probed in the supercooled
regime. Approximations of u(r) in terms of inverse power laws are also
discussed.Comment: 4 pages, 3 figure
Understanding fragility in supercooled Lennard-Jones mixtures. II. Potential energy surface
We numerically investigated the connection between isobaric fragility and the
properties of high-order stationary points of the potential energy surface in
different supercooled Lennard-Jones mixtures. The increase of effective
activation energies upon supercooling appears to be driven by the increase of
average potential energy barriers measured by the energy dependence of the
fraction of unstable modes. Such an increase is sharper, the more fragile is
the mixture. Correlations between fragility and other properties of high-order
stationary points, including the vibrational density of states and the
localization features of unstable modes, are also discussed.Comment: 13 pages, 13 figures, minor revisions, one figure adde
Pressure-energy correlations and thermodynamic scaling in viscous Lennard-Jones liquids
We use molecular dynamics simulation results on viscous binary Lennard-Jones
mixtures to examine the correlation between the potential energy and the
virial. In accord with a recent proposal [U. R. Pedersen et. al. Phys. Rev.
Lett. 100, 015701 (2008)], the fluctuations in the two quantities are found to
be strongly correlated, exhibiting a proportionality constant, Gamma,
numerically equal to one-third the slope of an inverse power law approximation
to the intermolecular potential function. The correlation is stronger at higher
densities, where interatomic separations are in the range where the inverse
power law approximation is more accurate. These same liquids conform to
thermodynamic scaling of their dynamics, with the scaling exponent equal to
Gamma. Thus, the properties of strong correlation between energy and pressure
and thermodynamic scaling both reflect the ability of an inverse power law
representation of the potential to capture interesting features of the dynamics
of dense, highly viscous liquids.Comment: 5 pages, 4 figures; published version, one figure remove
Density scaling in viscous liquids: From relaxation times to four-point susceptibilities
We present numerical calculations of a four-point dynamic susceptibility,
chi_4(t), for the Kob-Andersen Lennard-Jones mixture as a function of
temperature T and density rho. Over a relevant range of T and rho, the full
t-dependence of chi_4(t) and thus the maximum in chi_4(t), which is
proportional to the dynamic correlation volume, are invariant for state points
for which the scaling variable rho^gamma/T is constant. The value of the
material constant gamma is the same as that which superposes the relaxation
time, tau, of the system versus rho^gamma/T. Thus, the dynamic correlation
volume is directly related to tau for any thermodynamic condition in the regime
where density scaling holds. Finally, we examine the conditions under which the
density scaling properties are related to the existence of strong correlations
between pressure and energy fluctuations.Comment: 5 pages, 4 figures, updated reference
Understanding fragility in supercooled Lennard-Jones mixtures. I. Locally preferred structures
We reveal the existence of systematic variations of isobaric fragility in
different supercooled Lennard-Jones binary mixtures by performing molecular
dynamics simulations. The connection between fragility and local structures in
the bulk is analyzed by means of a Voronoi construction. We find that clusters
of particles belonging to locally preferred structures form slow, long-lived
domains, whose spatial extension increases by decreasing temperature. As a
general rule, a more rapid growth, upon supercooling, of such domains is
associated to a more pronounced super-Arrhenius behavior, hence to a larger
fragility.Comment: 14 pages, 14 figures, minor revisions, one figure adde
Cluster glasses of ultrasoft particles
We present molecular dynamics (MD) simulations results for dense fluids of
ultrasoft, fully-penetrable particles. These are a binary mixture and a
polydisperse system of particles interacting via the generalized exponential
model, which is known to yield cluster crystal phases for the corresponding
monodisperse systems. Because of the dispersity in the particle size, the
systems investigated in this work do not crystallize and form disordered
cluster phases. The clustering transition appears as a smooth crossover to a
regime in which particles are mostly located in clusters, isolated particles
being infrequent. The analysis of the internal cluster structure reveals
microsegregation of the big and small particles, with a strong
homo-coordination in the binary mixture. Upon further lowering the temperature
below the clustering transition, the motion of the clusters' centers-of-mass
slows down dramatically, giving way to a cluster glass transition. In the
cluster glass, the diffusivities remain finite and display an activated
temperature dependence, indicating that relaxation in the cluster glass occurs
via particle hopping in a nearly arrested matrix of clusters. Finally we
discuss the influence of the microscopic dynamics on the transport properties
by comparing the MD results with Monte Carlo simulations.Comment: 17 pages, 23 figure
Are there localized saddles behind the heterogeneous dynamics of supercooled liquids?
We numerically study the interplay between heterogeneous dynamics and
properties of negatively curved regions of the potential energy surface in a
model glassy system. We find that the unstable modes of saddles and
quasi-saddles undergo a localization transition close to the Mode-Coupling
critical temperature. We also find evidence of a positive spatial correlation
between clusters of particles having large displacements in the unstable modes
and dynamical heterogeneities.Comment: 7 pages, 3 figures, submitted to Europhys. Let
Dynamics in binary cluster crystals
As a result of the application of coarse-graining procedures to describe
complex fluids, the study of systems consisting of particles interacting
through bounded, repulsive pair potentials has become of increasing interest in
the last years. A well known example is the so-called Generalized Exponential
Model (GEM-), for which the interaction between particles is described by
the potential . Interactions with
lead to the formation of a novel phase of soft matter consisting of cluster
crystals. Recent studies on the phase behavior of binary mixtures of GEM-
particles have provided evidence for the formation of novel kinds of alloys,
depending on the cross interactions between the two species. This work aims to
study the dynamic behavior of such binary mixtures by means of extensive
molecular dynamics simulations, and in particular to investigate the effect of
the addition of non-clustering particles on the dynamic scenario of
one-component cluster crystals. Analogies and differences with the
one-component case are revealed and discussed by analyzing self- and collective
dynamic correlators.Comment: 17 pages, 8 figures, submitted to JSTA
Non-monotonic temperature evolution of dynamic correlations in glass-forming liquids
The viscosity of glass-forming liquids increases by many orders of magnitude
if their temperature is lowered by a mere factor of 2-3 [1,2]. Recent studies
suggest that this widespread phenomenon is accompanied by spatially
heterogeneous dynamics [3,4], and a growing dynamic correlation length
quantifying the extent of correlated particle motion [5-7]. Here we use a novel
numerical method to detect and quantify spatial correlations which reveal a
surprising non-monotonic temperature evolution of spatial dynamical
correlations, accompanied by a second length scale that grows monotonically and
has a very different nature. Our results directly unveil a dramatic qualitative
change in atomic motions near the mode-coupling crossover temperature [8] which
involves no fitting or indirect theoretical interpretation. Our results impose
severe new constraints on the theoretical description of the glass transition,
and open several research perspectives, in particular for experiments, to
confirm and quantify our observations in real materials.Comment: 7 page
- …
