7 research outputs found

    Effects of Nigella sativa on oxidative stress and ß-cell damage in streptozotocin-induced diabetic rats

    No full text
    The aim of the present study was to evaluate the possible protective effects of Nigella sativa L. (NS) against ß-cell damage from streptozotocin (STZ)-induced diabetes in rats. STZ was injected intraperitoneally at a single dose of 50 mg/kg to induce diabetes. NS (0.2 ml/kg/day, i.p.) was injected for 3 days prior to STZ administration, and these injections were continued throughout the 4-week study. Oxidative stress is believed to play a role in the pathogenesis of diabetes mellitus (DM). To assess changes in the cellular antioxidant defense system, we measured the activities of antioxidant enzymes (such as glutathione peroxidase (GSHPx), superoxide dismutase (SOD), and catalase (CAT)) in pancreatic homogenates. We also measured serum nitric oxide (NO) and erythrocyte and pancreatic tissue malondialdehyde (MDA) levels, a marker of lipid peroxidation, to determine whether there is an imbalance between oxidant and antioxidant status. Pancreatic ß-cells were examined by immunohistochemical methods. STZ induced a significant increase in lipid peroxidation and serum NO concentrations, and decreased antioxidant enzyme activity. NS treatment has been shown to provide a protective effect by decreasing lipid peroxidation and serum NO, and increasing antioxidant enzyme activity. Islet cell degeneration and weak insulin immunohistochemical staining was observed in rats with STZ-induced diabetes. Increased intensity of staining for insulin, and preservation of ß-cell numbers were apparent in the NS-treated diabetic rats. These findings suggest that NS treatment exerts a therapeutic protective effect in diabetes by decreasing oxidative stress and preserving pancreatic ß-cell integrity. Consequently, NS may be clinically useful for protecting ß-cells against oxidative stress. © 2004 Wiley-Liss, Inc

    Effects of Nigella sativa on oxidative stress and beta-cell damage in streptozotocin-induced diabetic rats

    No full text
    WOS: 000222466000012PubMed: 15224410The aim of the present study was to evaluate the possible protective effects of Nigella sativa L. (NS) against beta-cell damage from streptozotocin (STZ)-induced diabetes in rats. STZ was injected intraperitoneally at a single dose of 50 mg/kg to induce diabetes. NS (0.2 ml/kg/day, i.p.) was injected for 3 days prior to STZ administration, and these injections were continued throughout the 4-week study. Oxidative stress is believed to play a role in the pathogenesis of diabetes mellitus (DM). To assess changes in the cellular antioxidant defense system, we measured the activities of antioxidant enzymes (such as glutathione peroxidase (GSHPx), superoxide dismutase (SOD), and catalase (CAT)) in pancreatic homogenates. We also measured serum nitric oxide (NO) and erythrocyte and pancreatic tissue malondialdehyde (MDA) levels, a marker of lipid peroxidation, to determine whether there is an imbalance between oxidant and antioxidant status. Pancreatic beta-cells were examined by immunohistochemical methods. STZ induced a significant increase in lipid peroxidation and serum NO concentrations, and decreased antioxidant enzyme activity. NS treatment has been shown to provide a protective effect by decreasing lipid peroxidation and serum NO, and increasing antioxidant enzyme activity. Islet cell degeneration and weak insulin immunohistochemical staining was observed in rats with STZ-induced diabetes. Increased intensity of staining for insulin, and preservation of beta-cell numbers were apparent in the NS-treated diabetic rats. These findings suggest that NS treatment exerts a therapeutic protective effect in diabetes by decreasing oxidative stress and preserving pancreatic beta-cell integrity. Consequently, NS may be clinically useful for protecting beta-cells against oxidative stress. (C) 2004 Wiley-Liss, Inc

    Quercetin, a flavonoid antioxidant, prevents and protects streptozotocin-induced oxidative stress and beta-cell damage in rat pancreas

    No full text
    WOS: 000226559600004PubMed: 15629256dThe aim of the present study was the evaluation of possible protective effects of quercetin (QE) against beta-cell damage in experimental streptozotocin (STZ)-induced diabetes in rats. STZ was injected intraperitoneally at a single dose of 50 mg kg(-1) for diabetes induction. QE (15 mg kg-1 day, intraperitoneal (i.p.) injection) was injected for 3 days prior to STZ administration; these injections were continued to the end of the study (for 4 weeks). It has been believed that oxidative stress plays a role in the pathogenesis of diabetes mellitus (DM). In order to determine the changes of cellular antioxidant defense system, antioxidant enzymes such as glutathione peroxidase (GSHPx), superoxide dismutase (SOD) and catalase (CAT) activities were measured in pancreatic homogenates. Moreover we also measured serum nitric oxide (NO) and erythrocyte and pancreatic tissue malondialdehyde (MDA) levels, a marker of lipid peroxidation, if there is an imbalance between oxidant and antioxidant status. Pancreatic p-cells were examined by inummohistochemical methods. STZ induced a significant increase lipid peroxidation, serum NO concentrations and decreased the antioxidant enzyme activity. Erythrocyte MDA, serum NO and pancreatic tissue MDA significantly increased (P < 0.05) and also the antioxidant levels significantly decreased (P < 0.05) in diabetic group. QE treatment significantly decreased the elevated MDA and NO (P < 0.05), and also increased the antioxidant enzyme activities (P < 0.05). QE treatment has shown protective effect possibly through decreasing lipid peroxidation, NO production and increasing antioxidant enzyme activity. Islet cells degeneration and weak insulin immurrohistochemical staining was observed in STZ induced diabetic rats. Increased staining of insulin and preservation of islet cells were apparent in the QE-treated diabetic rats. These findings suggest that QE treatment has protective effect in diabetes by decreasing oxidative stress and preservation of pancreatic beta-cell integrity. (C) 2004 Elsevier Ltd. All rights reserved

    Quercetin, a flavonoid antioxidant, prevents and protects streptozotocin-induced oxidative stress and ß-cell damage in rat pancreas

    No full text
    The aim of the present study was the evaluation of possible protective effects of quercetin (QE) against ß-cell damage in experimental streptozotocin (STZ)-induced diabetes in rats. STZ was injected intraperitoneally at a single dose of 50 mg kg -1 for diabetes induction. QE (15 mg kg -1 day, intraperitoneal (i.p.) injection) was injected for 3 days prior to STZ administration; these injections were continued to the end of the study (for 4 weeks). It has been believed that oxidative stress plays a role in the pathogenesis of diabetes mellitus (DM). In order to determine the changes of cellular antioxidant defense system, antioxidant enzymes such as glutathione peroxidase (GSHPx), superoxide dismutase (SOD) and catalase (CAT) activities were measured in pancreatic homogenates. Moreover we also measured serum nitric oxide (NO) and erythrocyte and pancreatic tissue malondialdehyde (MDA) levels, a marker of lipid peroxidation, if there is an imbalance between oxidant and antioxidant status. Pancreatic ß-cells were examined by immunohistochemical methods. STZ induced a significant increase lipid peroxidation, serum NO concentrations and decreased the antioxidant enzyme activity. Erythrocyte MDA, serum NO and pancreatic tissue MDA significantly increased (P &lt; 0.05) and also the antioxidant levels significantly decreased (P &lt; 0.05) in diabetic group. QE treatment significantly decreased the elevated MDA and NO (P &lt; 0.05), and also increased the antioxidant enzyme activities (P &lt; 0.05). QE treatment has shown protective effect possibly through decreasing lipid peroxidation, NO production and increasing antioxidant enzyme activity. Islet cells degeneration and weak insulin immunohistochemical staining was observed in STZ induced diabetic rats. Increased staining of insulin and preservation of islet cells were apparent in the QE-treated diabetic rats. These findings suggest that QE treatment has protective effect in diabetes by decreasing oxidative stress and preservation of pancreatic ß-cell integrity. © 2004 Elsevier Ltd. All rights reserved

    The oxidative and morphological effects of high concentration chronic toluene exposure on rat sciatic nerves

    No full text
    This study was designed to investigate the effects of chronic toluene inhalation in high concentration on lipid peroxidation, antioxidant enzyme activities and ultrastructural changes in the sciatic nerves of rats. Male Wistar albino rats (150-250 g) were divided in two experimental groups: the control and the toluene treated group (n = 10 for each). Toluene treatment was performed by inhalation of 3000 ppm toluene, in a 8 h/day and 6 day/week order for 16 weeks. Blood and tissue samples were obtained for biochemical and histopathological investigation. The blood and sciatic nerves were assayed for toluene by gas chromatography. Toluene significantly increased blood and tissue malondialdehyde (MDA), and decreased tissue superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px), but not tissue catalase (CAT) levels when compared with controls. Electron micrographs of sciatic nerve in the toluene group shows myelin destructions with onion-bulb and bubble form protrusion on the myelin sheath and axolemma border of myelinated axons. The area of injury on the myelin sheath were measured by Image-Pro Plus. Mean of the injury area were estimated 34% each myelin. These findings indicate that chronic toluene inhalation might be involved with free radical processes
    corecore