2,539 research outputs found

    Effects of air injection on a turbocharged Teledyne Continential Motors TSIO-360-C engine

    Get PDF
    A turbocharged fuel injected aircraft engine was operated over a range of test conditions that included that EPA five-mode emissions cycle and fuel air ratio variations for individual modes while injecting air into the exhaust gas. Air injection resulted in a decrease of hydrocarbons and carbon monoxide while exceeding the maximum recommended turbine inlet temperature of 1650 F at the full rich mixture of the engine. Leanout tests indicated that the EPA standards could be met through the combined use of fuel management and air injection

    Emissions of an AVCO Lycoming 0-320-DIAD air cooled light aircraft engine as a function of fuel-air ratio, timing, and air temperature and humidity

    Get PDF
    A carbureted aircraft engine was operated over a range of test conditions to establish the exhaust levels over the EPA seven-mode emissions cycle. Baseline (full rich production limit) exhaust emissions at an induction air temperature of 59 F and near zero relative humidity were 90 percent of the EPA standard for HC, 35 percent for NOx, and 161 percent for CO. Changes in ignition timing around the standard 25 deg BTDC from 30 deg BTDC to 20 deg BTDC had little effect on the exhaust emissions. Retarding the timing to 15 deg BTDC increased both the HC and CO emissions and decreased NOx emissions. HC and CO emissions decreased as the carburetor was leaned out, while NOx emissions increased. The EPA emission standards were marginally achieved at two leanout conditions. Variations in the quantity of cooling air flow over the engine had no effect on exhaust emissions. Temperature-humidity effects at the higher values of air temperature and relative humidity tested indicated that the HC and CO emissions increased significantly, while the NOx emissions decreased

    Effect of air temperature and relative humidity at various fuel-air ratios on exhaust emissions on a per-mode basis of an Avco Lycoming 0-320 DIAD light aircraft engine. Volume 2: Individual data points

    Get PDF
    A carbureted four cylinder air cooled 0-320 DIAD Lycoming aircraft engine was tested to establish the effects of air temperature and humidity at various fuel-air ratios on the exhaust emissions on a per-mode basis. The test conditions included carburetor lean-out at air temperatures of 50, 59, 80, and 100 F at relative humidities of 0, 30, 60, and 80 percent. Temperature-humidity effects at the higher values of air temperature and relative humidity tested indicated that the HC and CO emissions increased significantly, while the NOx emissions decreased. Even at a fixed fuel-air ratio, the HC emissions increase and the NOx emissions decrease at the higher values of air temperature and humidity. Volume II contains the data taken at each of the individual test points

    Contributors to the January Issue/Notes

    Get PDF
    Notes by John H. Merryman, John E. Cosgrove, Edward J. Flattery, James D. Sullivan, Lawrence Turner, John O\u27Rorke, Thomas Broden, George S. Stratigos, Richard H. Keen, and J. Barrett Guthrie

    Effect of Air Temperature and Relative Humidity at Various Fuel-Air Ratios on Exhaust Emissions on a Per-Mode Basis of an AVCO Lycoming 0-320 Diad Light Aircraft Engine: Volume 1: Results and Plotted Data

    Get PDF
    A carbureted four cylinder air cooled 0-320 DIAD Lycoming aircraft engine was tested to establish the effects of air temperature and humidity at various fuel-air ratios on the exhaust emissions on a per-mode basis. The test conditions include carburetor lean out at air temperatures of 50, 59, 80, and 100 F at relative humidities of 0, 30, 60, and 80 percent. Temperature humidity effects at the higher values of air temperature and relative humidity tested indicated that the HC and CO emissions increased significantly, while the NOx emissions decreased. Even at a fixed fuel air ratio, the HC emissions increase and the NOx emissions decrease at the higher values of air temperature and humidity

    Investigation of a lattice Boltzmann model with a variable speed of sound

    Full text link
    A lattice Boltzmann model is considered in which the speed of sound can be varied independently of the other parameters. The range over which the speed of sound can be varied is investigated and good agreement is found between simulations and theory. The onset of nonlinear effects due to variations in the speed of sound is also investigated and good agreement is again found with theory. It is also shown that the fluid viscosity is not altered by changing the speed of sound

    Third order superintegrable systems separating in polar coordinates

    Full text link
    A complete classification is presented of quantum and classical superintegrable systems in E2E_2 that allow the separation of variables in polar coordinates and admit an additional integral of motion of order three in the momentum. New quantum superintegrable systems are discovered for which the potential is expressed in terms of the sixth Painlev\'e transcendent or in terms of the Weierstrass elliptic function

    General-relativistic Model of Magnetically Driven Jet

    Get PDF
    The general scheme for the construction of the general-relativistic model of the magnetically driven jet is suggested. The method is based on the usage of the 3+1 MHD formalism. It is shown that the critical points of the flow and the explicit radial behavior of the physical variables may be derived through the jet ``profile function."Comment: 12 pages, LaTex, no figure

    Mapping Urban Performance Culture: A Common Ground for Architecture and Theater

    Full text link
    Our co-taught course focuses on theater history, with an emphasis on performance architecture. Assignments are designed to illuminate the ways in which architectural design and technology inform performance practices and audience reception. The pivotal assignment for exploring interdisciplinarity is a three-week module on mapping historical theaters in New York City. Open-source Global Information Systems (GIS) software serves as a common mechanism for students to situate theatrical productions in the context of the built urban environment, deepening their understanding of the social, economic, and artistic forces that contributed to performance culture. Mapping is a shared pedagogy for analyzing and presenting research findings from different fields. Learning how to collect, analyze, and map data is also a general education skill that can be applied to disciplines across undergraduate curricula
    corecore