36 research outputs found

    Combination of imaging flow cytometry and time-lapse microscopy for the study of label-free morphology dynamics of hematopoietic cells

    No full text
    International audienceCell differentiation is a longitudinal and dynamic process. Studying and quantifying such a process require tools combining precise time resolution and statistical power. Imaging flow cytometry (IFC) provides statistically significant number of microscopy images of individual cells in a sample at a given time point. Time-lapse microscopy (TLM) is the method of choice for studying the dynamics of cell processes at a high temporal, but low statistical resolution. In this work, we show that the dynamic changes of cord-blood derived CD34+ cells in response to cytokine stimulation can be successfully studied, in a label-free way, by the combination of the IFCs statistical power and the TLM's high time resolution. Cell morphology phenotypes were quantified through roundness and surface area, measured both in IFC and with a homemade segmentation algorithm in TLM. Two distinct morphologies-polarized and round-were observed in cord-blood derived CD34+. We show that some cells have the ability to fluctuate between these morphologies, suggesting that the apparent stable composition of round and polarized cells may actually represent a dynamic equilibrium. This example demonstrates that the different resolutions and modalities of IFC and TLM are complementary and allow the study of complex dynamic biological processes. (c) 2017 International Society for Advancement of Cytometry

    Artificial intelligence workflow quantifying muscle features on Hematoxylin–Eosin stained sections reveals dystrophic phenotype amelioration upon treatment

    No full text
    International audienceAbstract Cell segmentation is a key step for a wide variety of biological investigations, especially in the context of muscle science. Currently, automated methods still struggle to perform skeletal muscle fiber quantification on Hematoxylin-Eosin (HE) stained histopathological whole slide images due to low contrast. On the other hand, the Deep Learning algorithm Cellpose offers new perspectives considering its increasing adoption for segmentation of a wide range of cells. Combining two open-source tools, Cellpose and QuPath, we developed MyoSOTHES, an automated Myofibers Segmentation wOrkflow Tuned for HE Staining. MyoSOTHES enables solving segmentation inconsistencies encountered by default Cellpose model in presence of large range size cells and provides information related to muscle Feret’s diameter distribution and Centrally Nucleated Fibers, thus depicting muscle health and treatment effects. MyoSOTHES achieves high quality segmentation compared to baseline workflow with a detection F1-score increasing from 0.801 to 0.919 and a Root Mean Square Error (RMSE) on diameter improved by 31%. MyoSOTHES was validated on an animal study featuring gene transfer in γ\gamma γ -Sarcoglycanopathy, for which dose-response effect is visible and conclusions drawn are consistent with those previously published. MyoSOTHES thus paves the way for wide quantification of HE stained muscle sections and retrospective analysis of HE labeled slices used in laboratories for decades

    Bioluminescence-Based Tumor Quantification Method for Monitoring Tumor Progression and Treatment Effects in Mouse Lymphoma Models

    No full text
    International audienceAlthough bioluminescence imaging (BLI) shows promise for monitoring tumor burden in animal models of cancer, these analyses remain mostly qualitative. Here we describe a method for bioluminescence imaging to obtain a semi-quantitative analysis of tumor burden and treatment response. This method is based on the calculation of a luminoscore, a value that allows comparisons of two animals from the same or different experiments. Current BLI instruments enable the calculation of this luminoscore, which relies mainly on the acquisition conditions (back and front acquisitions) and the drawing of the region of interest (manual markup around the mouse). Using two previously described mouse lymphoma models based on cell engraftment, we show that the luminoscore method can serve as a noninvasive way to verify successful tumor cell inoculation, monitor tumor burden, and evaluate the effects of in situ cancer treatment (CpG-DNA). Finally, we show that this method suits different experimental designs. We suggest that this method be used for early estimates of treatment response in preclinical small-animal studies

    Mouse models of primary central nervous system lymphomas: tools for basing funding and therapeutic strategies

    No full text
    International audiencePrimary central nervous system lymphomas (PCNSL) include ocular and cerebral lymphomas and are rare aggressive malignancies with poor prognoses. Compared with other lymphomas, they are a challenge for clinicians and scientists, for diagnosis and therapeutic progress and their prognosis remains unsatisfactory, because of the lack of molecular and biological knowledge. Indeed, several limitations of human sample present a major obstacle to the identification of the particular microenvironment of the sanctuary sites where these tumor cells grow. In addition, the generally poor overall condition and performance status of patients with PCNSL limit their participation in prospective trials. Therefore, animal models of PCNSL are essential for tumor microenvironment characterization and for antitumor response studying. In this review, we have compiled the B-and T-cell PCNSL mouse models that are used to improve our understanding of the lymphoma microenvironment, tropism and migration and to investigate novel therapeutic strategies

    Single Cell Dynamics Causes Pareto-Like Effect in Stimulated T Cell Populations

    No full text
    International audienceCell fate choice during the process of differentiation may obey to deterministic or stochastic rules. In order to discriminate between these two strategies we used time-lapse microscopy of individual murine CD4 + T cells that allows investigating the dynamics of proliferation and fate commitment. We observed highly heterogeneous division and death rates between individual clones resulting in a Pareto-like dominance of a few clones at the end of the experiment. Commitment to the Treg fate was monitored using the expression of a GFP reporter gene under the control of the endogenous Foxp3 promoter. All possible combinations of proliferation and differentiation were observed and resulted in exclusively GFP-, GFP+ or mixed phenotype clones of very different population sizes. We simulated the process of proliferation and differentiation using a simple mathematical model of stochastic decision-making based on the experimentally observed parameters. The simulations show that a stochastic scenario is fully compatible with the observed Pareto-like imbalance in the final population

    An AAV-SGCG Dose-Response Study in a Îł-Sarcoglycanopathy Mouse Model in the Context of Mechanical Stress

    No full text
    International audienceSarcoglycanopathies are rare autosomic limb girdle muscular dystrophies caused by mutations in one of the genes coding for sarcoglycans. Sarcoglycans form a complex, which is an important part of the dystrophin-associated glycoprotein complex and which protects the sarcolemma against muscle contraction-induced damage. Absence of one of the sarcoglycans on the plasma membrane reduces the stability of the whole complex and perturbs muscle fiber membrane integrity. There is currently no curative treatment for any of the sarcoglycanopathies. A first clinical trial to evaluate the safety of a recombinant AAV2/1 vector expressing Îł-sarcoglycan using an intramuscular route of administration showed limited expression of the transgene and good tolerance of the approach. In this report, we undertook a dose-effect study in mice to evaluate the efficiency of an AAV2/8-expressing Îł-sarcoglycan controlled by a muscle-specific promoter with a systemic mode of administration. We observed a dose-related efficiency with a nearly complete restoration of gamma sarcoglycan (SGCG) expression, histological appearance, biomarker level, and whole-body strength at the highest dose tested. In addition, our data suggest that a high expression threshold level must be achieved for effective protection of the transduced muscle, while a suboptimal transgene expression level might be less protective in the context of mechanical stress

    Inhibition of the myostatin/Smad signaling pathway by short decorin-derived peptides

    No full text
    International audienceMyostatin, also known as growth differentiation factor 8, is a member of the transforming growth factor-beta superfamily that has been shown to play a key role in the regulation of the skeletal muscle mass. Indeed, while myostatin deletion or loss of function induces muscle hypertrophy, its overexpression or systemic administration causes muscle atrophy. Since myostatin blockade is effective in increasing skeletal muscle mass, myostatin inhibitors have been actively sought after. Decorin, a member of the small leucine-rich proteoglycan family is a metalloprotein that was previously shown to bind and inactivate myostatin in a zinc-dependent manner. Furthermore, the myostatin-binding site has been shown to be located in the decorin N-terminal domain. In the present study, we investigated the anti-myostatin activity of short and soluble fragments of decorin. Our results indicate that the murine decorin peptides DCN48-71 and 42-65 are sufficient for inactivating myostatin in vitro. Moreover, we show that the interaction of mDCN48-71 to myostatin is strictly zinc-dependent. Binding of myostatin to activin type II receptor results in the phosphorylation of Smad2/3. Addition of the decorin peptide 48-71 decreased in a dose-dependent manner the myostatin-induced phosphorylation of Smad2 demonstrating thereby that the peptide inhibits the activation of the Smad signaling pathway. Finally, we found that mDCN48-71 displays a specificity towards myostatin, since it does not inhibit other members of the transforming growth factor-beta family

    Titin M-line insertion sequence 7 is required for proper cardiac function in mice

    No full text
    International audienceABSTRACT Titin is a giant sarcomeric protein that is involved in a large number of functions, with a primary role in skeletal and cardiac sarcomere organization and stiffness. The titin gene (TTN) is subject to various alternative splicing events, but in the region that is present at the M-line, the only exon that can be spliced out is Mex5, which encodes for the insertion sequence 7 (is7). Interestingly, in the heart, the majority of titin isoforms are Mex5+, suggesting a cardiac role for is7. Here, we performed comprehensive functional, histological, transcriptomic, microscopic and molecular analyses of a mouse model lacking the Ttn Mex5 exon (ΔMex5), and revealed that the absence of the is7 is causative for dilated cardiomyopathy. ΔMex5 mice showed altered cardiac function accompanied by increased fibrosis and ultrastructural alterations. Abnormal expression of excitation–contraction coupling proteins was also observed. The results reported here confirm the importance of the C-terminal region of titin in cardiac function and are the first to suggest a possible relationship between the is7 and excitation–contraction coupling. Finally, these findings give important insights for the identification of new targets in the treatment of titinopathies
    corecore