165 research outputs found

    An efficient composite membrane to improve the performance of PEM reversible fuel cells

    Get PDF
    The aim of this study is to develop composite Nafion/GO membranes, varying GO loading, to be used in a Unitized reversible fuel cell comparing its performance with the baseline Nafion. Water uptake, ion exchange capacity (IEC), tensile strength, and SEM (scanning electron microscope) analysis are discussed. The SEM analysis revealed how the GO is homogeneously disposed into the Nafion matrix. The addition of GO improves the membrane tensile strength while reducing the elongation ratio. Water uptake, IEC enhance with the increasing of GO content. Regarding fuel cell mode, the performance is analysed using a polarization curve on a MEA with an effective area of 9 cm2. The composite membrane demonstrated higher mechanical strength, enhanced water uptake so higher performance in fuel cell mode. Despite the power absorbed from the electrolysis is higher when using a composite membrane, the beneficial effect in FC mode resulted in a slightly higher round trip efficiency. The GO-Nafion membrane was not able to maintain its performance with increasing the operating time, so potentially leading to a lower lifetime than the Nafion bare

    Assessment of the structural representativeness of sample data sets for the mechanical characterization of deep formations.

    Get PDF
    Accurate characterization of the mechanical behavior of geomaterials at depth is a fundamental need for geologic and engineering purposes. Laboratory tests on samples from well cores provide the material characterization in terms of mechanical response and other relevant properties. Representativeness of a sample data set with respect to the in situ conditions at depth is a key issue, which needs to be addressed to extrapolate the laboratory response to the whole rock mass. We have developed a procedure aimed at quantitatively evaluating the representativeness of laboratory samples. The methodology is based on joint processing of laboratory ultrasonic tests and wellbore sonic logs. A structural index is used to quantify the difference between the average structure of the laboratory sample and the structure of the formation at the wellbore scale. This index could be used to identify different causes of discrepancies between the behavior of the cored samples and the behavior of the rock formation as documented by well logs. Then, it could also be used to integrate laboratory data for the construction of a reliable geomechanical model with reference to the real in situ state. The methodology was applied to three different experimental data sets, showing the effectiveness of the method

    Limits on Phase Separation for Two-Dimensional Strongly Correlated Electrons

    Full text link
    From calculations of the high temperature series for the free energy of the two-dimensional t-J model we construct series for ratios of the free energy per hole. The ratios can be extrapolated very accurately to low temperatures and used to investigate phase separation. Our results confirm that phase separation occurs only for J/t greater than 1.2. Also, the phase transition into the phase separated state has Tc of approximately 0.25J for large J/t.Comment: 4 pages, 6 figure

    Exact bounds on the ground-state energy of the infinite-U Hubbard model

    Full text link
    We give upper and lower bounds for the ground-state energy of the infinite-U Hubbard model. In two dimensions, using these bounds we are able to rule out the possibility of phase separation between the undoped-insulating state and an hole-rich state.Comment: 2 pages, 1 figure, to appear in Phys. Rev.

    3D-electrical resistivity tomography monitoring of salt transport in homogeneous and layered soil samples

    Get PDF
    Monitoring transport of dissolved substances in soil deposits is particularly relevant where safety is concerned, as in the case of geo-environmental barriers. Geophysical methods are very appealing, since they cover a wide domain, localising possible preferential flow paths and providing reliable links between geophysical quantities and hydrological variables. This paper describes a 3D laboratory application of Electrical Resistivity Tomography (ERT) used to monitor solute transport processes. Dissolution and transport tests on both homogeneous and heterogeneous samples were conducted in an instrumented oedometer cell. ERT was used to create maps of electrical conductivity of the monitored domain at different time intervals and to estimate concentration variations within the interstitial fluid. Comparisons with finite element simulations of the transport processes were performed to check the consistency of the results. Tests confirmed that the technique can monitor salt transport, infer the hydro-chemical behaviour of heterogeneous geomaterials and evaluate the performances of clay barrier

    Stripe phases in the two-dimensional Falicov-Kimball model

    Full text link
    The observation of charge stripe order in the doped nickelate and cuprate materials has motivated much theoretical effort to understand the underlying mechanism of the stripe phase. Numerical studies of the Hubbard model show two possibilities: (i) stripe order arises from a tendency toward phase separation and its competition with the long-range Coulomb interaction or (ii) stripe order inherently arises as a compromise between itinerancy and magnetic interactions. Here we determine the restricted phase diagrams of the two-dimensional Falicov-Kimball model and see that it displays rich behavior illustrating both possibilities in different regions of the phase diagram.Comment: (5 pages, 3 figures

    Estimation of the hydraulic parameters of unsaturated samples by electrical resistivity tomography

    Get PDF
    In situ and laboratory experiments have shown that electrical resistivity tomography (ERT) is an effective tool to image transient phenomena in soils. However, its application in quantifying soil hydraulic parameters has been limited. In this study, experiments of water inflow in unsaturated soil samples were conducted in an oedometer equipped to perform three-dimensional electrical measurements. Reconstructions of the electrical conductivity at different times confirmed the usefulness of ERT for monitoring the evolution of water content. The tomographic reconstructions were subsequently used in conjunction with a finite-element simulation to infer the water retention curve and the unsaturated hydraulic conductivity. The parameters estimated with ERT agree satisfactorily with those determined using established techniques, hence the proposed approach shows good potential for relatively fast characterisations. Similar experiments could be carried out on site to study the hydraulic behaviour of the entire soil deposi

    3D Engineering Geological Modeling to Investigate a Liquefaction Site: An Example in Alluvial Holocene Sediments in the Po Plain, Italy

    Get PDF
    Liquefaction-induced surface manifestations are the result of a complex geological–geotechnical phenomenon, driven by several controlling factors. We propose a multidisciplinary methodological approach, involving engineering geologists, geomorphologists, sedimentologists, and geotechnical engineers, to build a 3D engineering geological model for liquefaction assessment studies. The study area is Cavezzo (Po Plain, Italy), which is a municipality hit by superficial liquefaction manifestations during the Emilia seismic crisis of May–June 2012. The site is characterized by a Holocene alluvial sequence of the floodplain, fluvial channel, and crevasse splay deposits prone to liquefaction. The integration of different geotechnical investigations, such as boreholes, CPTm, CPTu, and laboratory tests, allowed us to recognize potentially liquefiable lithological units, crucial for hazard assessment studies. The resulting 3D engineering geological model reveals a strict correlation of co-seismic surface manifestations with buried silty sands and sandy silts within the shallow 10 m in fluvial channel setting, which is capped and laterally confined by clayey and silty deposits
    corecore