540 research outputs found

    On the 3D steady flow of a second grade fluid past an obstacle

    Full text link
    We study steady flow of a second grade fluid past an obstacle in three space dimensions. We prove existence of solution in weighted Lebesgue spaces with anisotropic weights and thus existence of the wake region behind the obstacle. We use properties of the fundamental Oseen tensor together with results achieved in \cite{Koch} and properties of solutions to steady transport equation to get up to arbitrarily small \ep the same decay as the Oseen fundamental solution

    Impact of immune parameters and immune dysfunctions on the prognosis of patients with chronic lymphocytic leukemia

    Get PDF
    Chronic lymphocytic leukemia (CLL) is characterized by a wide spectrum of immune alterations, affecting both the innate and adaptive immunity. These immune dysfunctions strongly impact the immune surveillance, facilitate tumor progression and eventually affect the disease course. Quantitative and functional alterations involving conventional T cells, γδ T cells, regulatory T cells, NK and NKT cells, and myeloid cells, together with hypogammaglobulinemia, aberrations in the complement pathways and altered cytokine signature have been reported in patients with CLL. Some of these immune parameters have been shown to associate with other CLL‐related characteristics with a known prognostic relevance or to correlate with disease prognosis. Also, in CLL, the complex immune response dysfunctions eventually translate in clinical manifestations, including autoimmune phenomena, increased risk of infections and second malignancies. These clinical issues are overall the most common complications that affect the course and management of CLL, and they also may impact overall disease prognosis

    Immune dysfunctions and immune-based therapeutic interventions in chronic lymphocytic leukemia

    Get PDF
    Chronic lymphocytic leukemia (CLL) is a B-cell malignancy characterized by a wide range of tumor-induced alterations, which affect both the innate and adaptive arms of the immune response, and accumulate during disease progression. In recent years, the development of targeted therapies, such as the B-cell receptor signaling inhibitors and the Bcl-2 protein inhibitor venetoclax, has dramatically changed the treatment landscape of CLL. Despite their remarkable anti-tumor activity, targeted agents have some limitations, which include the development of drug resistance mechanisms and the inferior efficacy observed in high-risk patients. Therefore, additional treatments are necessary to obtain deeper responses and overcome drug resistance. Allogeneic hematopoietic stem cell transplantation (HSCT), which exploits immune-mediated graft-versus-leukemia effect to eradicate tumor cells, currently represents the only potentially curative therapeutic option for CLL patients. However, due to its potential toxicities, HSCT can be offered only to a restricted number of younger and fit patients. The growing understanding of the complex interplay between tumor cells and the immune system, which is responsible for immune escape mechanisms and tumor progression, has paved the way for the development of novel immune-based strategies. Despite promising preclinical observations, results from pilot clinical studies exploring the safety and efficacy of novel immune-based therapies have been sometimes suboptimal in terms of long-term tumor control. Therefore, further advances to improve their efficacy are needed. In this context, possible approaches include an earlier timing of immunotherapy within the treatment sequencing, as well as the possibility to improve the efficacy of immunotherapeutic agents by administering them in combination with other anti-tumor drugs. In this review, we will provide a comprehensive overview of main immune defects affecting patients with CLL, also describing the complex networks leading to immune evasion and tumor progression. From the therapeutic standpoint, we will go through the evolution of immune-based therapeutic approaches over time, including i) agents with broad immunomodulatory effects, such as immunomodulatory drugs, ii) currently approved and next-generation monoclonal antibodies, and iii) immunotherapeutic strategies aiming at activating or administering immune effector cells specifically targeting leukemic cells (e.g. bi-or tri-specific antibodies, tumor vaccines, chimeric antigen receptor T cells, and checkpoint inhibitors)

    Impact of immune parameters and immune dysfunctions on the prognosis of patients with chronic lymphocytic leukemia

    Get PDF
    SIMPLE SUMMARY: In chronic lymphocytic leukemia (CLL), immune alterations—affecting both the innate and adaptive immunity—are very common. As a clinical consequence, patients with CLL frequently present with autoimmune phenomena, increased risk of infections and second malignancies. The aim of this review article is to present available data on CLL-associated alterations of immune parameters that correlate with known prognostic markers and with clinical outcome. Also, data on the impact of immune-related clinical manifestations on the prognosis of patients with CLL will be discussed. ABSTRACT: Chronic lymphocytic leukemia (CLL) is characterized by a wide spectrum of immune alterations, affecting both the innate and adaptive immunity. These immune dysfunctions strongly impact the immune surveillance, facilitate tumor progression and eventually affect the disease course. Quantitative and functional alterations involving conventional T cells, γδ T cells, regulatory T cells, NK and NKT cells, and myeloid cells, together with hypogammaglobulinemia, aberrations in the complement pathways and altered cytokine signature have been reported in patients with CLL. Some of these immune parameters have been shown to associate with other CLL-related characteristics with a known prognostic relevance or to correlate with disease prognosis. Also, in CLL, the complex immune response dysfunctions eventually translate in clinical manifestations, including autoimmune phenomena, increased risk of infections and second malignancies. These clinical issues are overall the most common complications that affect the course and management of CLL, and they also may impact overall disease prognosis

    Autoimmune complications in chronic lymphocytic leukemia in the era of targeted drugs

    Get PDF
    Autoimmune phenomena are frequently observed in patients with chronic lymphocytic leukemia (CLL) and are mainly attributable to underlying dysfunctions of the immune system. Autoimmune cytopenias (AIC) affect 4–7% of patients with CLL and mainly consist of autoimmune hemolytic anemia and immune thrombocytopenia. Although less common, non-hematological autoimmune manifestations have also been reported. Treatment of CLL associated AIC should be primarily directed against the autoimmune phenomenon, and CLL specific therapy should be reserved to refractory cases or patients with additional signs of disease progression. New targeted drugs (ibrutinib, idelalisib and venetoclax) recently entered the therapeutic armamentarium of CLL, showing excellent results in terms of efficacy and became an alternative option to standard chemoimmunotherapy for the management of CLL associated AIC. However, the possible role of these drugs in inducing or exacerbating autoimmune phenomena still needs to be elucidated. In this article, we review currently available data concerning autoimmune phenomena in patients with CLL, particularly focusing on patients treated with ibrutinib, idelalisib, or venetoclax, and we discuss the possible role of these agents in the management of AIC

    Combining exposure indicators and predictive analytics for threats detection in real industrial IoT sensor networks

    Get PDF
    We present a framework able to combine exposure indicators and predictive analytics using AI-tools and big data architectures for threats detection inside a real industrial IoT sensors network. The described framework, able to fill the gaps between these two worlds, provides mechanisms to internally assess and evaluate products, services and share results without disclosing any sensitive and private information. We analyze the actual state of the art and a possible future research on top of a real case scenario implemented into a technological platform being developed under the H2020 ECHO project, for sharing and evaluating cybersecurity relevant informations, increasing trust and transparency among different stakeholders

    Pedestrian flows in bounded domains with obstacles

    Full text link
    In this paper we systematically apply the mathematical structures by time-evolving measures developed in a previous work to the macroscopic modeling of pedestrian flows. We propose a discrete-time Eulerian model, in which the space occupancy by pedestrians is described via a sequence of Radon positive measures generated by a push-forward recursive relation. We assume that two fundamental aspects of pedestrian behavior rule the dynamics of the system: On the one hand, the will to reach specific targets, which determines the main direction of motion of the walkers; on the other hand, the tendency to avoid crowding, which introduces interactions among the individuals. The resulting model is able to reproduce several experimental evidences of pedestrian flows pointed out in the specialized literature, being at the same time much easier to handle, from both the analytical and the numerical point of view, than other models relying on nonlinear hyperbolic conservation laws. This makes it suitable to address two-dimensional applications of practical interest, chiefly the motion of pedestrians in complex domains scattered with obstacles.Comment: 25 pages, 9 figure
    corecore