1 research outputs found

    Kinetic control over CdS nanocrystal nucleation using a library of thiocarbonates, thiocarbamates, and thioureas

    Get PDF
    We report a family of substituted thiocarbonates, thiocarbamates, and thioureas and their reaction with cadmium oleate at 180-240 degrees C to form zincblende CdS nanocrystals (d = 2.25.9 nm). To monitor the kinetics of CdS formation with UV-vis spectroscopy, the size dependence of the extinction coefficient for lambda(max)(1S(e)-1S(1/2h)) is determined. The precursor conversion reactivity spans 5 orders of magnitude depending on the precursor structure (2 degrees-thioureas > 3 degrees-thioureas >= 2 degrees-thiocarbamates > 2 degrees-thiocarbonates > 4 degrees-thioureas >= 3 degrees-thiocarbamates). The concentration of nanocrystals formed during nucleation increases when more reactive precursors are used, allowing the final size to be controlled by the precursor structure. H-1 NMR spectroscopy is used to monitor the reaction of di-p-tolyl thiocarbonate and cadmium oleate where di-p-tolyl carbonate and oleic anhydride coproducts can be identified. These coproducts further decompose into p-tolyl oleate and p-cresol. The spectral features of CdS nanocrystals produced from thiocarbonates are exceptionally narrow (95-161 meV fwhm) as compared to those made from thioureas (137-174 meV fwhm) under otherwise identical conditions, indicating that particular precursors nucleate narrower size distributions than others
    corecore