3,659 research outputs found

    MAGIC sensitivity to millisecond-duration optical pulses

    Full text link
    The MAGIC telescopes are a system of two Imaging Atmospheric Cherenkov Telescopes (IACTs) designed to observe very high energy (VHE) gamma rays above ~50 GeV. However, as IACTs are sensitive to Cherenkov light in the UV/blue and use photo-detectors with a time response well below the ms scale, MAGIC is also able to perform simultaneous optical observations. Through an alternative system installed in the central PMT of MAGIC II camera, the so-called central pixel, MAGIC is sensitive to short (1ms - 1s) optical pulses. Periodic signals from the Crab pulsar are regularly monitored. Here we report for the first time the experimental determination of the sensitivity of the central pixel to isolated 1-10 ms long optical pulses. The result of this study is relevant for searches of fast transients such as Fast Radio Bursts (FRBs).Comment: Proceedings of the 35th International Cosmic Ray Conference (ICRC 2017), Bexco, Busan, Korea (arXiv:1708.05153

    Production cross-sections and momentum distributions of fragments from neutron-deficient 36Ar at 1.05 A.GeV

    Full text link
    We have measured production cross sections and longitudinal momentum distributions of fragments from neutron-deficient 36Ar at 1.05 A.GeV. The production cross-sections show excellent agreement with the predictions of the semiempirical formula EPAX. We have compared these results, involving extremly neutron deficient nuclei, with model calculations to extract informa tion about the response of these models close to the driplines. The longitudinal momentum distributions have also been extracted and are compared with the Goldhaber and Morrissey systematics.Comment: 16 pages, 6 figure

    Status and First Results of the MAGIC Telescope

    Full text link
    The 17 m MAGIC Cherenkov telescope for gamma ray astronomy between 30 and 300 GeV started operations in its final configuration in October 2003 and is currently well into its calibration phase. Here I report on its present status and its first gamma ray source detections.Comment: Contribution to the proceedings of the II Workshop on Unidentified Gamma-Ray Sources, Hong Kong, June 1-4, 200

    Observations of microquasars with the MAGIC telescope

    Full text link
    We report on the results from the observations in very high energy band (VHE, E_gamma > 100GeV) of the black hole X-ray binary (BHXB) Cygnus X-1. The observations were performed with the MAGIC telescope, for a total of 40 hours during 26 nights, spanning the period between June and November 2006. We report on the results of the searches for steady and variable gamma-ray signals, including the first experimental evidence for an intense flare, of duration between 1.5 and 24 hours.Comment: Contribution to the 30th ICRC, Merida Mexico, July 2007 on behalf of the MAGIC Collaboratio

    Towards portable muography with small-area, gas-tight glass Resistive Plate Chambers

    Get PDF
    Imaging techniques that use atmospheric muons, collectively named under the neologism "muography", have seen a tremendous growth in recent times, mainly due to their diverse range of applications. The most well-known ones include but are not limited to: volcanology, archaeology, civil engineering, nuclear reactor monitoring, nuclear waste characterization, underground mapping, etc. These methods are based on the attenuation or deviation of muons to image large and/or dense objects where conventional techniques cannot work or their use becomes challenging. In this context, we have constructed a muography telescope based on "mini glass-RPC planes" following a design similar to the glass-RPC detectors developed by the CALICE Collaboration and used by the TOMUVOL experiment in the context of volcano radiography, but with smaller active area (16 ×\times 16 cm2^{2}). The compact size makes it an attractive choice with respect to other detectors previously employed for imaging on similar scales. An important innovation in this design is that the detectors are sealed. This makes the detector more portable and solves the usual safety and logistic issues for gas detectors operated underground and/or inside small rooms. This paper provides an overview on our guiding principles, the detector development and our operational experiences. Drawing on the lessons learnt from the first prototype, we also discuss our future direction for an improved second prototype, focusing primarily on a recently adopted serigraphy technique for the resistive coating of the glass plates.Comment: 8 pages, 7 figures, XV Workshop on Resistive Plate Chambers and Related Detectors (RPC2020
    corecore