13 research outputs found

    Directed Molecular Stacking for Engineered Fluorescent Three-Dimensional Reduced Graphene Oxide and Coronene Frameworks

    Get PDF
    [EN] Three‐dimensional fluorescent graphene frameworks with controlled porous morphologies are of significant importance for practical applications reliant on controlled structural and electronic properties, such as organic electronics and photochemistry. Here we report a synthetically accessible approach concerning directed aromatic stacking interactions to give rise to new fluorogenic 3D frameworks with tuneable porosities achieved through molecular variations. The binding interactions between the graphene‐like domains present in the in situ‐formed reduced graphene oxide (rGO) with functional porphyrin molecules lead to new hybrids via an unprecedented solvothermal reaction. Functional free‐base porphyrins featuring perfluorinated aryl groups or hexyl chains at their meso‐ and β‐positions were employed in turn to act as directing entities for the assembly of new graphene‐based and foam‐like frameworks and of their corresponding coronene‐based hybrids. Investigations in the dispersed phase and in thin‐film by XPS, SEM and FLIM shed light onto the nature of the aromatic stacking within functional rGO frameworks (denoted rGOFs) which was then modelled semi‐empirically and by DFT calculations. The pore sizes of the new emerging reduced graphene oxide hybrids are tuneable at the molecular level and mediated by the bonding forces with the functional porphyrins acting as the “molecular glue”. Single crystal X‐ray crystallography described the stacking of a perfluorinated porphyrin with coronene, which can be employed as a molecular model for understanding the local aromatic stacking order and charge transfer interactions within these rGOFs for the first time. This opens up a new route to controllable 3D framework morphologies and pore size from the Ångstrom to the micrometre scale. Theoretical modelling showed that the porosity of these materials is mainly due to the controlled inter‐planar distance between the rGO, coronene or graphene sheets. The host‐guest chemistry involves the porphyrins acting as guests held through π‐π stacking, as demonstrated by XPS. The objective of this study is also to shed light into the fundamental localised electronic and energy transfer properties in these new molecularly engineered porous and fluorogenic architectures, aiming in turn to understand how functional porphyrins may exert stacking control over the notoriously disordered local structure present in porous reduced graphene oxide fragments. By tuning the porosity and the distance between the graphene sheets using aromatic stacking with porphyrins, it is also possible to tune the electronic structure of the final nanohybrid material, as indicated by FLIM experiments on thin films. Such nanohybrids with highly controlled pores dimensions and morphologies open the way to new design and assembly of storage devices and applications incorporating π‐conjugated molecules and materials and their π‐stacks may be relevant towards selective separation membranes, water purification and biosensing applications.S.I.P. and S.W.B. thank The Royal Society and STFC for funding. B.Y.M. thanks the University of Bath for a studentship (ORS). D.G.C. thanks the Fundación General CSIC for funding (ComFuturo Program). Dr. Jose A. Ribeiro Martins, Professors Jeremy K. M. Sanders and Paul Raithby are acknowledged for training, helpful discussions and porphyrin supramolecular chemistry. The S.I.P. group thanks the EPSRC for funding to the Centre of Graphene Science (EP/K017160/1) and to the Centre for Doctoral Training in Sustainable Chemical Technologies (EP/L016354/1). The authors thank EPSRC National Service for Mass Spectrometry at Swansea and EPSRC National Service for Crystallography at Southampton for data collection. The authors also acknowledge the ERC for the Consolidator Grant O2SENSE (617107, 2014–2019)

    Shedding Light Onto the Nature of Iron Decorated Graphene and Graphite Oxide Nanohybrids for CO₂ Conversion at Atmospheric Pressure

    Get PDF
    We report on the design and testing of new graphite and graphene oxide‐based extended π‐conjugated synthetic scaffolds for applications in sustainable chemistry transformations. Nanoparticle‐functionalised carbonaceous catalysts for new Fischer Tropsch and Reverse GasWater Shift (RGWS) transformations were prepared: functional graphene oxides emerged from graphite powders via an adapted Hummer's method and subsequently impregnated with uniform‐sized nanoparticles. Then the resulting nanomaterials were imaged by TEM, SEM, EDX, AFM and characterised by IR, XPS and Raman spectroscopies prior to incorporation of Pd(II) promoters and further microscopic and spectroscopic analysis. Newly synthesised 2D and 3D layered nanostructures incorporating carbon‐supported iron oxide nanoparticulate pre‐catalysts were tested, upon hydrogen reduction in situ, for the conversion of CO2 to CO as well as for the selective formation of CH4 and longer chain hydrocarbons. The reduction reaction was also carried out and the catalytic species isolated and fully characterised. The catalytic activity of a graphene oxide‐supported iron oxide pre‐catalyst converted CO2 into hydrocarbons at different temperatures (305, 335, 370 and 405 °C), and its activity compared well with that of the analogues supported on graphite oxide, the 3‐dimensional material precursor to the graphene oxide. Investigation into the use of graphene oxide as a framework for catalysis showed that it has promising activity with respect to reverse gas water shift (RWGS) reaction of CO2 to CO, even at the low levels of catalyst used and under the rather mild conditions employed at atmospheric pressure. Whilst the γ‐Fe2O3 decorated graphene oxide‐based pre‐catalyst displays fairly constant activity up to 405 °C, it was found by GC‐MS analysis to be unstable with respect to decomposition at higher temperatures. The addition of palladium as a promoter increased the activity of the iron functionalised graphite oxide in the RWGS. The activity of graphene oxide supported catalysts was found to be enhanced with respect to that of iron‐functionalised graphite oxide with, or without palladium as a promoter, and comparable to that of Fe@carbon nanotube‐based systems tested under analogous conditions. These results display a significant step forward for the catalytic activity estimations for the iron functionalised and rapidly processable and scalable graphene oxide. The hereby investigated phenomena are of particular relevance for the understanding of the intimate surface morphologies and the potential role of non‐covalent interactions in the iron oxide‐graphene oxide networks, which could inform the design of nano‐materials with performance in future sustainable catalysis applications

    Radio- and nano-chemistry of aqueous Ga(iii) ions anchored onto graphene oxide-modified complexes

    Get PDF
    The gallium-68 radiolabelling of new functional graphene oxide composites is reported herein along with kinetic stability investigations of the radio-nanohybrids under different environments and insights into their surface characteristics by SEM and XPS. The present work highlights the potential of graphene oxides as nanocarriers for small molecules such as bis(thiosemicarbazonato) complexes to act as multifunctional platforms for rapid and effective radioimaging agent incorporation

    Tricyclic cell-penetrating peptides for efficient delivery of functional antibodies into cancer cells

    No full text
    The intracellular environment hosts a large number of cancer- and other disease-relevant human proteins. Targeting these with internalized antibodies would allow therapeutic modulation of hitherto undruggable pathways, such as those mediated by protein–protein interactions. However, one of the major obstacles in intracellular targeting is the entrapment of biomacromolecules in the endosome. Here we report an approach to delivering antibodies and antibody fragments into the cytosol and nucleus of cells using trimeric cell-penetrating peptides (CPPs). Four trimers, based on linear and cyclic sequences of the archetypal CPP Tat, are significantly more potent than monomers and can be tuned to function by direct interaction with the plasma membrane or escape from vesicle-like bodies. These studies identify a tricyclic Tat construct that enables intracellular delivery of functional immunoglobulin-G antibodies and Fab fragments that bind intracellular targets in the cytosol and nuclei of live cells at effective concentrations as low as 1 μM

    Shedding Light Onto the Nature of Iron DecoratedGraphene and Graphite Oxide Nanohybrids for CO2Conversion at Atmospheric Pressure

    Get PDF
    [EN] We report on the design and testing of new graphite and graphene oxide‐based extended π‐conjugated synthetic scaffolds for applications in sustainable chemistry transformations. Nanoparticle‐functionalised carbonaceous catalysts for new Fischer Tropsch and Reverse GasWater Shift (RGWS) transformations were prepared: functional graphene oxides emerged from graphite powders via an adapted Hummer's method and subsequently impregnated with uniform‐sized nanoparticles. Then the resulting nanomaterials were imaged by TEM, SEM, EDX, AFM and characterised by IR, XPS and Raman spectroscopies prior to incorporation of Pd(II) promoters and further microscopic and spectroscopic analysis. Newly synthesised 2D and 3D layered nanostructures incorporating carbon‐supported iron oxide nanoparticulate pre‐catalysts were tested, upon hydrogen reduction in situ, for the conversion of CO2 to CO as well as for the selective formation of CH4 and longer chain hydrocarbons. The reduction reaction was also carried out and the catalytic species isolated and fully characterised. The catalytic activity of a graphene oxide‐supported iron oxide pre‐catalyst converted CO2 into hydrocarbons at different temperatures (305, 335, 370 and 405 °C), and its activity compared well with that of the analogues supported on graphite oxide, the 3‐dimensional material precursor to the graphene oxide. Investigation into the use of graphene oxide as a framework for catalysis showed that it has promising activity with respect to reverse gas water shift (RWGS) reaction of CO2 to CO, even at the low levels of catalyst used and under the rather mild conditions employed at atmospheric pressure. Whilst the γ‐Fe2O3 decorated graphene oxide‐based pre‐catalyst displays fairly constant activity up to 405 °C, it was found by GC‐MS analysis to be unstable with respect to decomposition at higher temperatures. The addition of palladium as a promoter increased the activity of the iron functionalised graphite oxide in the RWGS. The activity of graphene oxide supported catalysts was found to be enhanced with respect to that of iron‐functionalised graphite oxide with, or without palladium as a promoter, and comparable to that of Fe@carbon nanotube‐based systems tested under analogous conditions. These results display a significant step forward for the catalytic activity estimations for the iron functionalised and rapidly processable and scalable graphene oxide. The hereby investigated phenomena are of particular relevance for the understanding of the intimate surface morphologies and the potential role of non‐covalent interactions in the iron oxide‐graphene oxide networks, which could inform the design of nano‐materials with performance in future sustainable catalysis applications.This work was financially supported by Science & Technologies Facilities Council, EPSRC (EP/K017160/1, EPGO3768X/1, EP/L016354/1, EP/H04630511) and the ERC Consolidator grant scheme (617107 O2SENSE to Sofia Pascu) and University of Bath. Dr David G. Calatayud thanks the Fundación General CSIC for funding (ComFuturo Program). We thank Drs James Tyson, Vincenzo Mirabello and Justin O'Byrne (Bath University) for their collaborative support, helpful discussions and particularly for the assistance with initial batches of GO and thermally reduced GO synthesis, PXRD and Raman spectroscopy.Peer reviewe

    Radio- and nano-chemistry of aqueous Ga(III) ions anchored onto graphene oxide-modified complexes

    Get PDF
    [EN] The gallium-68 radiolabelling of new functional graphene oxide composites is reported herein along with kinetic stability investigations of the radio-nanohybrids under different environments and insights into their surface characteristics by SEM and XPS. The present work highlights the potential of graphene oxides as nanocarriers for small molecules such as bis (thiosemicarbazonato) complexes to act as multifunctional platforms for rapid and effective radioimaging agent incorporation.The S. I. P. group thanks the Centre for Doctoral Training in Sustainable Chemical Technologies (EP/L016354/1). SIP also acknowledges the EU funding through the ERC for the Consolidator Grant O2SENSE (617107, 2014–2020). The authors thank EPSRC National Service for Mass Spectrometry at Swansea and for data collection. We thank Professor Stan Botchway for training in confocal fluorescence microscopy and Professor Jon Dilworth for helpful discussions in the radiochemistry of bis (thiosemicarbazones). The EOA group acknowledges support from Imperial College NIHR Biomedical Research Centre, Cancer Research UK (C2536/A16584) and the UK Medical Research Council (MR/J007986/1). D. G. C. also acknowledges the Fundación General CSIC (ComFuturo Program) for the financial support and F. J. P. the Spanish Ministry of Economy and Competitiveness (MINECO) (MAT2016-80394-R).Peer reviewe
    corecore