14 research outputs found

    Involvement of MBD4 inactivation in mismatch repair-deficient tumorigenesis

    Get PDF
    The DNA glycosylase gene MBD4 safeguards genomic stability at CpG sites and is frequently mutated at coding poly-A tracks in mismatch repair (MMR)-defective colorectal tumors (CRC). Mbd4 biallelic inactivation in mice provided conflicting results as to its role in tumorigenesis. Thus, it is unclear whether MBD4 alterations are only secondary to MMR defects without functional consequences or can contribute to the mutator phenotype. We investigated MBD4 variants in a large series of hereditary/familial and sporadic CRC cases. Whereas MBD4 frameshifts were only detected in tumors, missense variants were found in both normal and tumor DNA. In CRC with double-MBD4/MMR and single-MBD4 variants, transition mutation frequency was increased, indicating that MBD4 defects may affect the mutational landscape independently of MMR defect. Mbd4-deficient mice showed reduced survival when combined with Mlh1−/− genotype. Taken together, these data suggest that MBD4 inactivation may contribute to tumorigenesis, acting as a modifier of MMR-deficient cancer phenotype

    The base excision repair enzyme MED1 mediates DNA damage response to antitumor drugs and is associated with mismatch repair system integrity

    No full text
    Cytotoxicity of methylating agents is caused mostly by methylation of the O(6) position of guanine in DNA to form O(6)–methylguanine (O(6)–meG). O(6)–meG can direct misincorporation of thymine during replication, generating O(6)–meG:T mismatches. Recognition of these mispairs by the mismatch repair (MMR) system leads to cell cycle arrest and apoptosis. MMR also modulates sensitivity to other antitumor drugs. The base excision repair (BER) enzyme MED1 (also known as MBD4) interacts with the MMR protein MLH1. MED1 was found to exhibit thymine glycosylase activity on O(6)–meG:T mismatches. To examine the biological significance of this activity, we generated mice with targeted inactivation of the Med1 gene and prepared mouse embryonic fibroblasts (MEF) with different Med1 genotype. Unlike wild-type and heterozygous cultures, Med1(-/-) MEF failed to undergo G(2)-M cell cycle arrest and apoptosis upon treatment with the methylating agent N-methyl-N′-nitro-N-nitrosoguanidine (MNNG). Similar results were obtained with platinum compounds' 5-fluorouracil and irinotecan. As is the case with MMR-defective cells, resistance of Med1(-/-) MEF to MNNG was due to a tolerance mechanism because DNA damage accumulated but did not elicit checkpoint activation. Interestingly, steady state amounts of several MMR proteins are reduced in Med1(-/-) MEF, in comparison with Med1(+/+) and Med1(+/-) MEF. We conclude that MED1 has an additional role in DNA damage response to antitumor agents and is associated with integrity of the MMR system. MED1 defects (much like MMR defects) may impair cell cycle arrest and apoptosis induced by DNA damage

    Defective ciliogenesis, embryonic lethality and severe impairment of the Sonic Hedgehog pathway caused by inactivation of the mouse complex A intraflagellar transport gene Ift122/Wdr10, partially overlapping with the DNA repair gene Med1/Mbd4

    Get PDF
    AbstractPrimary cilia are assembled and maintained by evolutionarily conserved intraflagellar transport (IFT) proteins that are involved in the coordinated movement of macromolecular cargo from the basal body to the cilium tip and back. The IFT machinery is organized in two structural complexes named complex A and complex B. Recently, inactivation in the mouse germline of Ift genes belonging to complex B revealed a requirement of ciliogenesis, or proteins involved in ciliogenesis, for Sonic Hedgehog (Shh) signaling in mammals. Here we report on a complex A mutant mouse, defective for the Ift122 gene. Ift122-null embryos show multiple developmental defects (exencephaly, situs viscerum inversus, delay in turning, hemorrhage and defects in limb development) that result in lethality. In the node, primary cilia were absent or malformed in homozygous mutant and heterozygous embryos, respectively. Impairment of the Shh pathway was apparent in both neural tube patterning (expansion of motoneurons and rostro-caudal level-dependent contraction or expansion of the dorso-lateral interneurons), and limb patterning (ectrosyndactyly). These phenotypes are distinct from both complex B IFT mutant embryos and embryos defective for the ciliary protein hennin/Arl13b, and suggest reduced levels of both Gli2/Gli3 activator and Gli3 repressor functions. We conclude that complex A and complex B factors play similar but distinct roles in ciliogenesis and Shh/Gli3 signaling

    Fasting renders immunotherapy effective against low-immunogenic breast cancer while reducing side effects

    Get PDF
    Immunotherapy is improving the prognosis and survival of cancer patients, but despite encouraging out-comes in different cancers, the majority of tumors are resistant to it, and the immunotherapy combinations are often accompanied by severe side effects. Here, we show that a periodic fasting-mimicking diet (FMD) can act on the tumor microenvironment and increase the efficacy of immunotherapy (anti-PD-L1 and anti-OX40) against the poorly immunogenic triple-negative breast tumors (TNBCs) by expanding early exhausted effector T cells, switching the cancer metabolism from glycolytic to respiratory, and reducing collagen depo-sition. Furthermore, FMD reduces the occurrence of immune-related adverse events (irAEs) by preventing the hyperactivation of the immune response. These results indicate that FMD cycles have the potential to enhance the efficacy of anti-cancer immune responses, expand the portion of tumors sensitive to immuno-therapy, and reduce its side effects

    CDC42 switches IRSp53 from inhibition of actin growth to elongation by clustering of VASP

    No full text
    Filopodia explore the environment, sensing soluble and mechanical cues during directional motility and tissue morphogenesis. How filopodia are initiated and spatially restricted to specific sites on the plasma membrane is still unclear. Here, we show that the membrane deforming and curvature sensing IRSp53 (Insulin Receptor Substrate of 53 kDa) protein slows down actin filament barbed end growth. This inhibition is relieved by CDC42 and counteracted by VASP, which also binds to IRSp53. The VASP: IRSp53 interaction is regulated by activated CDC42 and promotes high-density clustering of VASP, which is required for processive actin filament elongation. The interaction also mediates VASP recruitment to liposomes. In cells, IRSp53 and VASP accumulate at discrete foci at the leading edge, where filopodia are initiated. Genetic removal of IRSp53 impairs the formation of VASP foci, filopodia and chemotactic motility, while IRSp53 null mice display defective wound healing. Thus, IRSp53 dampens barbed end growth. CDC42 activation inhibits this activity and promotes IRSp53-dependent recruitment and clustering of VASP to drive actin assembly. These events result in spatial restriction of VASP filament elongation for initiation of filopodia during cell migration, invasion, and tissue repair

    Abstract CT075: Fasting-mimicking diet and hormone therapy modulates metabolic factors to promote breast cancer regression and reduce side effects

    No full text
    Breast cancer (BC) is the most common malignancy with 1.7 million new diagnoses/year and is responsible for more than 450,000 yearly deaths worldwide. Two thirds of BC express the estrogen receptor (ER) and/or progesterone receptor and are referred to as hormone receptor-positive (HR+) BC. Endocrine therapy (ET) is usually active in these tumors, although drug resistance and side effects limit its benefit. Growth factor signaling through the PI3K/AKT/mammalian target of rapamycin (mTOR) and MAP kinase axes enhances ER activity and is a key mechanism underlying endocrine resistance. Water-only fasting (fasting) or plant-based, low-calorie, carbohydrate- and protein-restricted fasting-mimicking diets (FMDs) reduce circulating growth factors, such as insulin and IGF1 Therefore, we hypothesized that these dietary interventions could be used to enhance the activity of ET and delay the occurrence of resistance. For our in vitro experiments we used the HR+ BC cell lines, MCF7, T47D, and ZR-75-1, as well as metastases-derived organoids from patients with HR+ BC. Our in vivo experiments in mouse xenografts of human BC cell lines, were conducted in six-to-eight-week old female NOD SCID or athymic Nude-FoxN1 mice treated with ET w/ or w/o 48-72 hours of fasting/FMD. We monitored tumor growth and mouse survival and collected tumor masses and blood to detect circulating levels of several growth factors, adipokines and cytokines. In vivo add back experiments with fasting-reduced factors were done with IGF1, insulin and leptin. Circulating growth factors and adipo-cytokines were also detected in blood samples from 36 patients with HR+ BC, who were enrolled in either one of two clinical trials (NCT03595540 and NCT03340935) assessing safety and feasibility of periodic FMD in cancer patients. Patient nutritional status and response to treatment were also monitored in our clinical trials.We found that in HR+ BC models, periodic fasting or FMD enhanced tamoxifen and fulvestrant activity by lowering circulating IGF1, insulin, and leptin levels and by blocking AKT-mTOR signaling via EGR1 and PTEN upregulation. When fulvestrant was combined with palbociclib (a cyclin-dependent kinase 4/6 inhibitor), adding periodic FMD cycles promoted long-lasting tumour regressions and reverted acquired resistance to this regime. Moreover, both fasting and FMD prevented tamoxifen-induced endometrial hyperplasia. In HR+ BC patients receiving ET, FMD cycles caused metabolic changes analogous to those observed in mice, including reduced leptin and IGF1 levels, which were found to remain low for extended periods. In mice, these long-lasting effects were associated with carryover anticancer activity. Overall, our results provide the rationale for conducting further clinical studies of fasting-based dietary strategies as an adjuvant to ET w/ or w/o CDK4/6 inhibitors in patients with HR+ BC
    corecore